Строение углеводов. Углеводы

Углеводы

Переходя к рассмотрению органических веществ, нельзя не отметить значение углерода для жизни. Вступая в химические реакции, углерод образует прочные ковалентные связи, обобществляя четыре электрона. Атомы углерода, соединяясь между собой, способны образовывать стабильные цепи и кольца, служащие скелетами макромолекул. Углерод также может образовывать кратные ковалентные связи с другими углеродными атомами, а также с азотом и кислородом. Все эти свойства обеспечивают уникальное разнообразие органических молекул.

Макромолекулы , составляющие около 90 % массы обезвоженной клетки, синтезируются из более простых молекул, называемых мономерами . Существуют три основных типа макромолекул: полисахариды, белки и нуклеиновые кислоты ; мономерами для них являются, соответственно, моносахариды, аминокислоты и нуклеотиды.

Углеводами называют вещества с общей формулой C x (H 2 O) y , где x и y – натуральные числа. Название «углеводы» говорит о том, что в их молекулах водород и кислород находятся в том же отношении, что и в воде.

В животных клетках содержится небольшое количество углеводов, а в растительных – почти 70 % от общего количества органических веществ.

Моносахариды играют роль промежуточных продуктов в процессах дыхания и фотосинтеза , участвуют в синтезе нуклеиновых кислот, коферментов, АТФ и полисахаридов, служат , высвобождаемой при окислении в процессе дыхания. Производные моносахаридов – сахарные спирты, сахарные кислоты, дезоксисахара и аминосахара – имеют важное значение в процессе дыхания, а также используются при синтезе липидов, ДНК и других макромолекул.

Дисахариды образуются в результате реакции конденсации между двумя моносахаридами. Иногда они используются в качестве запасных питательных веществ. Наиболее распространенными из них являются мальтоза (глюкоза + глюкоза), лактоза (глюкоза + галактоза) и сахароза (глюкоза + фруктоза). содержится только в молоке. (тростниковый сахар) наиболее распространена в растениях; это и есть тот самый «сахар», который мы обычно употребляем в пищу.


Целлюлоза также является полимером глюкозы. В ней заключено около 50 % углерода, содержащегося в растениях. По общей массе на Земле целлюлоза занимает первое место среди органических соединений. Форма молекулы (длинные цепи с выступающими наружу –OH-группами) обеспечивает прочное сцепление между соседними цепями. При всей своей прочности, макрофибриллы, состоящие из таких цепей, легко пропускают воду и растворённые в ней вещества и потому служат идеальным строительным материалом для стенок растительной клетки. Целлюлоза – ценный источник глюкозы, однако для её расщепления необходим фермент целлюлаза, сравнительно редко встречающийся в природе. Поэтому в пищу целлюлозу употребляют только некоторые животные (например, жвачные). Велико и промышленное значение целлюлозы – из этого вещества изготовляют хлопчатобумажные ткани и бумагу.

Все углеводы состоят из отдельных «единиц», которыми являются сахариды. По способности к гидролизу на мономеры углеводы делятся на две группы: простые и сложные. Углеводы, содержащие одну единицу, называются моносахариды, две единицы – дисахариды, от двух до десяти единиц – олигосахариды, а более десяти – полисахариды.

Моносахариды быстро повышают содержание сахара в крови, и обладают высоким гликемическим индексом, поэтому их ещё называют быстрыми углеводами. Они легко растворяются в воде и синтезируются в зелёных растениях.

Углеводы, состоящие из 3 или более единиц, называются сложными. Продукты, богатые сложными углеводами, постепенно повышают содержание глюкозы и имеют низкий гликемический индекс, поэтому их ещё называют медленными углеводами. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов) и, в отличие от простых, в процессе гидролитического расщепления способны распадаться на мономеры, с образованием сотни и тысячи молекул моносахаридов.

Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение – L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН 2 ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы глюкоза , фруктоза , манноза и галактоза – по стереохимической конфигурациям относят к соединениям D-ряда.

Полисахари́ды – общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров моносахаридов . С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.

https :// ru . wikipedia . org / wiki /Углеводы

1.6. Липиды - номенклатура и строение. Полиморфизм липидов.

Липи́ды – обширная группа природных органических соединений, включающая жиры и жироподобные вещества. Молекулы простых липидов состоят из спирта и жирных кислот , сложных – из спирта, высокомолекулярных жирных кислот и других компонентов.

Классификация липидов

Простые липиды – это липиды, включающие в свою структуру углерод (С), водород (H) и кислород (O).

Сложные липиды – это липиды, включающие в свою структуру помимо углерода (С), водорода (H) и кислорода (О) и другие химические элементы. Чаще всего: фосфор (Р), серу (S), азот (N).

https :// ru . wikipedia . org / wiki /Липиды

Литература:

1) Черкасова Л. С., Мережинский М. Ф., Обмен жиров и липидов, Минск, 1961;

2) Маркман А. Л., Химия липидов, в. 12, Таш., 1963 – 70;

3) Тютюнников Б. Н., Химия жиров, М., 1966;

4) Малер Г., Кордес К., Основы биологической химии, пер. с англ., М., 1970.

1.7. Биологические мембраны. Формы агрегации липидов. Понятие о жидко-кристаллическом состоянии. Латеральная диффузия и флип-флоп.

Мембраны отграничивают цитоплазму от окружающей среды, а также формируют оболочки ядер, митохондрий и пластид. Они образуют лабиринт эндо-плазматического ретикулума и уплощенных пузырьков в виде стопки, составляющих комплекс Гольджи. Мембраны образуют лизосомы, крупные и мелкие вакуоли растительных и грибных клеток, пульсирующие вакуоли простейших. Все эти структуры представляют собой компартменты (отсеки), предназначенные для тех или иных специализированных процессов и циклов. Следовательно, без мембран существование клетки невозможно.

Схема строения мембраны: а – трехмерная модель; б – плоскостное изображение;

1 – белки, примыкающие к липидному слою (А), погруженные в него (Б) или пронизывающие его насквозь (В); 2 – слои молекул липидов; 3 – гликопротеины; 4 – гликолипиды; 5 – гидрофильный канал, функционирующий как пора.

Функции биологических мембран следующие:

1) Отграничивают содержимое клетки от внешней среды и содержимое органелл от цитоплазмы.

2) Обеспечивают транспорт веществ в клетку и из нее, из цитоплазмы в органеллы и наоборот.

3) Выполняют роль рецепторов (получение и преобразование сигналов из окружающей среды, узнавание веществ клеток и т. д.).

4) Являются катализаторами (обеспечение примембранных химических процессов).

5) Участвуют в преобразовании энергии.

http :// sbio . info / page . php ? id =15

Латеральная диффузия – это хаотическое тепловое перемещение молекул липидов и белков в плоскости мембраны. При латеральной диффузии рядом рас­положенные молекулы липидов скачком меняются местами, и вследствие таких последовательных перескоков из одного мес­та в другое молекула перемещается вдоль поверхности мемб­раны.

Перемещение молекул по поверхности мембраны клетки за время t определено экспериментально методом флуоресцентных меток – флюоресцирующих молекулярных групп. Флуоресцентные метки делают флюоресцирующими молекулы, дви­жение которых по поверхности клетки можно изучать, например, исследуя под микроскопом скорость расплывания по поверхности клетки флюоресцирующего пятна, созданного такими молекулами.

Флип-флоп – это диффузия молекул мембранных фосфолипидов поперек мембраны.

Скорость перескоков молекул с одной поверхности мембра­ны на другую (флип-флоп) определена методом спиновых ме­ток в опытах на модельных липидных мембранах – липосомах.

Часть фосфолипидных молекул, из которых формировались липосомы, метились присоединенными к ним спиновыми мет­ками. Липосомы подвергались воздействию аскорбиновой кис­лоты, вследствие чего неспаренные электроны на молекулах пропадали: парамагнитные молекулы становились диамагнит­ными, что можно было обнаружить по уменьшению площади под кривой спектра ЭПР.

Таким образом, перескоки молекул с одной поверхности бислоя на другую (флип-флоп) совершаются значительно медлен­нее, чем перескоки при латеральной диффузии. Среднее время, через которое фосфолипидная молекула совершает флип-флоп (Т ~ 1час), в десятки миллиардов раз больше среднего времени, характерного для перескока молекулы из одного места в сосед­нее в плоскости мембраны.

Понятие о жидко-кристаллическом состоянии

Твердое тело может быть как кристаллическим , так и аморфным. В первом случае имеется дальний порядок в расположении частиц на расстояниях, много превышающих межмолекулярные расстояния (кристаллическая решетка). Во втором – нет дальнего порядка в расположении атомов и молекул.

Различие между аморфным телом и жидкостью состоит не в наличии или отсутствии дальнего порядка, а в характере движения частиц. Молекулы жидкости и твердого тела совершают колебательные (иногда вращательные) движения около положения равновесия. Через некоторое среднее время («время оседлой жизни») происходит перескок молекул в другое положение равновесия. Различие заключается в том, что «время оседлой жизни» в жидкости намного меньше, чем в твердом состоянии.

Липидные двухслойные мембраны при физиологических условиях – жидкие, «время оседлой жизни» фосфолипидной молекулы в мембране составляет 10 −7 – 10 −8 с.

Молекулы в мембране расположены не беспорядочно, в их расположении наблюдается дальний порядок. Фосфолипидные молекулы находятся в двойном слое, а их гидрофобные хвосты примерно параллельны друг другу. Есть порядок и в ориентации полярных гидрофильных голов.

Физиологическое состояние, при котором есть дальний порядок во взаимной ориентации и расположении молекул, но агрегатное состояние жидкое, называется жидкокристаллическим состоянием. Жидкие кристаллы могут образовываться не во всех веществах, а в веществах из «длинных молекул» (поперечные размеры которых меньше продольных). Могут существовать различные жидкокристаллические структуры: нематическая (нитевидная), когда длинные молекулы ориентированы параллельно друг другу; смектическая – молекулы параллельны друг другу и располагаются слоями; холестическая – молекулы располагаются параллельно друг другу в одной плоскости, но в разных плоскостях ориентации молекул разные.

http :// www . studfiles . ru / preview /1350293/

Литература: Н.А. Лемеза, Л.В.Камлюк, Н.Д. Лисов. «Пособие по биологии для поступающих в ВУЗы».

1.8. Нуклеиновые кислоты. Гетероциклические основания, нуклеозиды, нуклеотиды, номенклатура. Пространственная структура нуклеиновых кислот - ДНК, РНК (тРНК, рРНК, мРНК). Рибосомы и ядро клетки. Методы определения первичной и вторичной структуры нуклеиновых кислот (секвенирование, гибридизация).

Нуклеиновые кислоты – фосфорсодержащие биополимеры живых организмов, обеспечивающие хранение и передачу наследственной информации.

Нуклеиновые кислоты представляют собой биополимеры. Их макромолекулы состоят из неоднократно повторяющихся звеньев, которые представлены нуклеотидами. И их логично назвали полинуклеотидами. Одной из главных характеристик нуклеиновых кислот является их нуклеотидный состав. В состав нуклеотида (структурного звена нуклеиновых кислот) входят три составные части:

Азотистое основание. Может быть пиримидиновое и пуриновое. В нуклеиновых кислотах содержатся основания 4-х разных видов: два из них относятся к классу пуринов и два – к классу пиримидинов.

Остаток фосфорной кислоты.

Моносахарид – рибоза или 2-дезоксирибоза. Сахар, входящий в состав нуклеотида, содержит пять углеродных атомов, т.е. представляет собой пентозу. В зависимости от вида пентозы, присутствующей в нуклеотиде, различают два вида нуклеиновых кислот – рибонуклеиновые кислоты (РНК), которые содержат рибозу, и дезоксирибонуклеиновые кислоты (ДНК), содержащие дизоксирибозу.

Нуклеотид по своей сути – это фосфорный эфир нуклеозида. В состав нуклеозида входят два компонента: моносахарид (рибоза или дезоксирибоза) и азотистое основание.

http :// sbio . info / page . php ? id =11

Азо́тистые основа́ния гетероциклические органические соединения, производные пиримидина и пурина , входящие в состав нуклеиновых кислот . Для сокращенного обозначения пользуются большими латинскими буквами. К азотистым основаниям относят аденин (A), гуанин (G), цитозин (C), которые входят в состав как ДНК, так и РНК. Тимин (T) входит в состав только ДНК, а урацил (U) встречается только в РНК.


§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой С m H 2 n O n или C m (H 2 O) n . Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группыпростые углеводы и сложные углеводы . Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С 3), тетрозы (С 4), пентозы (С 5), гексозы (С 6) и т.д.:


Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды , или полиозы ) представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды , степень полимеризации которых, как правило, меньше 10) и высокомолекулярные . Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu 2+ , Ag +) делят на восстанавливающие и невосстанавливающие . Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды . Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:


Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим с пищей, является крахмал. Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу , катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин . Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

Углеводы в продуктах питания.

Углеводы являются основным и легко доступным источником энергии для организма человека. Все углеводы представляют собой сложные молекулы состоящие из углерода(С), водорода(H) и кислорода(O), название происходит от слов «уголь» и «вода».

Из известных нам основных источников энергии, можно выделить три:

Углеводы (до 2% запасов)
- жиры (до 80% запасов)
- белки (до 18% запасов )

Углеводы являются самым быстрым топливом, которое в первую очередь используется для производства энергии, но их запасы очень малы (в среднем 2% от общего объема) т.к. для их накопления требуется много воды (для задержки 1г углеводов нужно 4г воды), а для отложения жиров вода не требуется.

Основные запасы углеводов хранятся в организме в виде гликогена (сложный углевод). Большая его масса содержится в мышцах (около 70%), остальное в печени (30%).
Все остальные функции углеводов а так же их химическое строение вы можете узнать

Углеводы в продуктах питания, классифицируются следующим образом.

Виды углеводов.

Углеводы, в простой классификации делятся на два основных класса: простые и сложные. Простые, в свою очередь состоят из моносахаридов и олигосахаридов, сложные из полисахаридов и волокнистых.

Простые углеводы.​


Моносахариды

Глюкоза («виноградный сахар», декстроза).
Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В организме человека глюкоза является основным и наиболее универсальным источником энергии для обеспечения метаболических процессов. Способностью усваивать глюкозу обладают все клетки организма животных. В то же время, способностью использовать другие источники энергии - например, свободные жирные кислоты и глицерин, фруктозу или молочную кислоту - обладают не все клетки организма, а лишь некоторые их типы. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как «топливо» для клеток. Глюкоза – необходимый компонент обмена углеводов . При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома).
Глюкоза «в чистом виде», как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.
Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

Фруктоза (фруктовый сахар).
Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина (гормон, который снижает уровень глюкозы в крови) проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное «топливо» - глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов .
Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

Галактоза (разновидность молочного сахара).
Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Олигосахариды

Сахароза (столовый сахар).
Сахароза – это дисахарид (углевод состоящий из двух компонентов), образованный молекулами глюкозы и фруктозы. Самый распостраненный вид сахарозы это – сахар. Содержание сахарозы в сахоре – 99.5%, фактически сахар это чистая сахароза.
Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

Лактоза (молочный сахар).
Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы . Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот «пучит». В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.
Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание - галактоземия, которая ведет к умственной отсталости.
Содержание лактозы в коровьем молоке составляет 4,7%, в твороге – от 1,8% до 2,8%, в сметане – от 2,6 до 3,1%, в кефире – от 3,8 до 5,1%, в йогуртах – около 3%.

Мальтоза (солодовый сахар).
Образуется при соединении двух молекул глюкозы. Содержится в таких продуктах как: солод, мед, пиво, патока, хлебобулочные и кондитерские изделия изготовленные с добавлением патоки.

Атлетам следует избегать приема глюкозы в чистом виде и продуктов богатых простыми сахарами в больших количествах, так как они запускают процесс образования жира.

Сложные углеводы.​


Сложные углеводы состоят в основном из повторяющихся звеньев соединений глюкозы. (полимеры глюкозы)

Полисахариды

Растительные полисахариды (крахмал).
Крахмал – основной из перевариваемых полисахаридов, он представляет собой сложную цепочку, состоящую из глюкозы. На его долю приходится до 80% потребляемых с пищей углеводов. Крахмал - это сложный или "медленный" углевод, поэтому он является предпочтительным источником энергии как при наборе массы, так и при похудении. В желудочно-кишечном тракте крахмал поддается гидролизу (разложение вещества под действием воды) расщепляется на декстрины (фрагменты крахмала), а в итоге на глюкозу и уже в таком виде усваивается организмом.
Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. А так же можно отметить не малое содержание крахмала в картофеле (15-18%).

Животные полисахариды (гликоген).
Гликоген - состоит из сильно разветвленных цепочек молекул глюкозы. После приема пищи в кровь начинает поступать большое количество глюкозы и организм человека запасает излишки этой глюкозы в виде гликогена. Когда уровень глюкозы в крови начинает снижаться (например при выполнении физических упражнений), организм с помощью ферментов расщепляет гликоген, в результате чего уровень глюкозы остается в норме и органы (в том числе, мышцы во время тренировки) получают достаточное ее количество для производства энергии. Гликоген откладывается главным образом в печени и мышцах.Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%). Общий запас гликогена составляет 100-120 г. В бодибилдинге имеет значение только тот гликоген, который содержится в мышечной ткани.

Волокнистые

Пищевая клетчатка (неусваиваемые, волокнистые)
Пищевая клетчатка или пищевые волокна относится к питательным веществам, которые, подобно воде и минеральным солям, не обеспечивают организм энергией, но играет огромную роль в его жизнедеятельности. Пищевая клетчатка, которая содержится главным образом в растительных продуктах с низким или очень низким содержанием сахара. Обычно она объединяется с другими питательными веществами.

Виды клетчатки.​


Целлюлоза и Гемицеллюлоза
Целлюлоза присутствует в непросеянной пшеничной муке, отрубях, капусте, молодом горохе, зеленых и восковидных бобах, брокколи, брюссельской капусте, в огуречной кожуре, перцах, яблоках, моркови.
Гемицеллюлоза содержится в отрубях, злаковых, неочищенном зерне, свекле, брюссельской капусте, зеленых побегах горчицы.
Целлюлоза и гемицеллюлоза впитывают воду, облегчая деятельность толстой кишки. В сущности, они «придают объем» отходам и быстрее продвигают их по толстому кишечнику. Это не только предотвращает возникновение запоров, но и защищает от дивертикулеза, спазматического колита, геморроя, рака толстой кишки и варикозного расширения вен.

Лигнин
Данный тип клетчатки встречается в злаковых, употребляемых на завтрак, в отрубях, лежалых овощах (при хранении овощей содержание лигнина в них увеличивается, и они хуже усваиваются), а также в баклажанах, зеленых бобах, клубнике, горохе, редисе.
Лигнин уменьшает усваиваемость других волокон. Кроме того, он связывается с желчными кислотами, способствуя снижению уровня холестерина, и ускоряет прохождение пищи через кишечник.

Камеди и Пектин
Камеди содержится в овсяной каше и других продуктах из овса, в сушеных бобах.
Пектин присутствует в яблоках, цитрусовых, моркови, цветной и кочанной капусте, сушеном горохе, зеленых бобах, картофеле, землянике, клубнике, фруктовых напитках.
Камеди и пектин влияют на процессы всасывания в желудке и тонком кишечнике. Связываясь с желчными кислотами, они уменьшают всасывание жира и снижают уровень холестерина. Задерживают опорожнение желудка и, обволакивая кишечник, замедляют всасывание сахара после приема пищи, что полезно для диабетиков, так как снижает необходимую дозу инсулина.

Зная виды углеводов, и их функции, возникает следующий вопрос –

Какие углеводы и сколько употреблять в пищу?

В большинстве продуктов основным составляющим являются углеводы, поэтому с их получением из пищи ни каких проблем возникнуть не должно, поэтому в суточном рационе большинства людей основную часть составляют именно углеводы.
У углеводов, которые попадают в наш организм с пищей, существует три пути метаболизма:

1) Гликогенез (поступившая сложностаставная углеводная пища в наш желудочно-кишечный тракт расщепляется на глюкозу, а затем запасается в виде сложных углеводов – гликогена в клетках мышц и печени, и используется как резервный источник питания, когда концентрация глюкозы в крови низкая)
2) Глюконеогенез (процесс образования в печени и корковом веществе почек (около 10%) - глюкозы, из аминокислот, молочной кислоты, глицерина)
3) Гликолиз (расщепление глюкозы и других углеводов с выделением энергии)

Метаболизм углеводов в основном определяется наличием глюкозы в кровотоке, этого важного и универсального источника энергии в организме. Наличие же глюкозы в крови, зависит от последнего приема и питательного состава пищи. То есть если вы недавно позавтракали, то концентрация глюкозы в крови будет высокой, если продолжительное время воздерживаетесь от еды – низкой. Меньше глюкозы – меньше энергии в организме, это очевидно, вот почему на голодный желудок ощущается упадок сил. В то время, когда содержание глюкозы в кровотоке низкое, а это очень хорошо наблюдается в утренние часы, после продолжительного сна, в течении которого вы ни как не поддерживали уровень имеющейся глюкозы в крови порциями углеводной пищи, запускается подпитка организма в состоянии голодания с помощью гликолиза - 75%, и на 25% с помощью глюконеогенеза, то есть расщеплением сложных запасенных углеводов, а так же аминокислот, глицерина и молочной кислоты.
Так же, не мало важное значение в регулировании концентрации глюкозы в крови оказывает гормон поджелудочной железы – инсулин . Инсулин транспортный гормон, он разносит излишки глюкозы в клетки мышц и другие ткани организма, тем самым регулируя максимальный уровень глюкозы в крови. У людей склонных к полноте, которые не следят за своей диетой, излишки поступающих с пищей углеводов в организм инсулин преобразует в жир, в основном это характерно для быстрых углеводов.
Что бы выбрать правильные углеводы из всего разнообразия пищи используется такое понятие как – гликемический индекс .

Гликемический индекс – это скорость всасывания поступаемых с пищей углеводов в кровоток и инсулиновая реакция поджелудочной железы. Он показывает влияние продуктов на уровень сахара в крови. Этот индекс измеряется по шкале от 0 до 100, зависит от видов продуктов, разные углеводы по разному усваиваются, какие то быстро, и соответственно у них будет гликемический индекс высокий, какие то медленно, эталоном быстрого всасывания, является чистая глюкоза, у нее гликемический индекс равен 100.

ГИ продукта зависит от некоторых факторов:

- Вид углеводов (простые углеводы обладают высоким ГИ, сложные – низким)
- Количество клетчатки (чем ее больше в пище, тем ниже ГИ)
- Способ обработки продуктов (например при тепловой обработке повышается ГИ)
- Содержание жиров и белков (чем больше их в пище, тем ниже ГИ)

Существуют множество различных таблиц определяющих гликемический индекс продуктов, вот одна из них:

Таблица гликемических индексов продуктов позволяет вам принимать правильные решения, выбирая, какие продукты включить в ваш дневной рацион, а какие сознательно исключить.
Принцип простой: чем выше гликемический индекс, тем реже включайте такие продукты в ваш рацион. И наоборот, чем ниже гликемический индекс, тем чаще употребляйте в пищу такие продукты.

Однако быстрые углеводы нам тоже пригодятся в таких важных приемах пищи как:

- с утра (после продолжительного сна концентрация глюкозы в крови очень низкая, и ее необходимо восполнить как можно быстрее, что бы не дать организму получать необходимую энергию для жизнедеятельности с помощью аминокислот, путем разрушения мышечных волокон)
- и после тренировки (когда затраты энергии на интенсивный физический труд значительно снижают концентрацию глюкозы в крови, после тренировки идеальный вариант принимать быстрее углеводы, для максимально быстрого восполнения их и препятствию катаболизма)

Сколько употреблять углеводов?

В бодибилдинге и фитнесе углеводы должны составлять не меньше 50% от всех питательных веществ (естественно мы не рассматриваем «сушку» или похудение).
Существует масса причин для того, чтобы нагрузить себя большим количеством углеводов, в особенности если речь идет о цельных, необработанных продуктах. Однако в первую очередь вы должны понимать, что у способности организма накапливать их существует некий предел. Представьте себе бензобак: он может вместить в себя лишь определенное количество литров бензина. Если вы попробуете влить в него больше, лишний неизбежно прольется. Как только запасы углеводов преобразовались в необходимое количество гликогена, печень начинает перерабатывать их излишки в жир, который затем хранится под кожей и в других частях тела.
Объем мышечного гликогена, который вы можете хранить, зависит от степени вашей мышечной массы. Подобно тому, как одни бензобаки бывают больше других, отличаются и мышцы у разных людей. Чем вы мускулистее, тем большее количество гликогена может хранить ваш организм.
Чтобы убедиться в том, что вы получаете правильное количество углеводов - не больше положенного, - подсчитайте свое суточное их потребление по следующей формуле. Для наращивания мышечной массы в сутки вам следует принимать -

7г углеводов на килограмм собственного веса (умножьте свой вес в килограммах на 7).

Подняв уровень потребления углеводов до необходимого, вы должны добавить дополнительную силовую нагрузку. Обильное количество углеводов при занятиях бодибилдингом обеспечит вас большей энергией, позволяющей заниматься интенсивнее и дольше и достигать лучших результатов.
Рассчитать свой дневной рацион можно подробней изучив эту статью

Углеводы - органические соединения, состоящие из углерода, и кислорода. Различают простые углеводы, или моносахариды, например глюкоза, и сложные, или полисахариды, которые делятся на низшие, содержащие немного остатков простых углеводов, например дисахариды, и высшие, имеющие очень большие молекулы из многих остатков простых углеводов. В животных организмах содержание углеводов составляет около 2% сухой массы.

Средняя суточная потребность взрослого человека в углеводах - 500 г, а при интенсивной мышечной работе - 700-1000 г.

Количество углеводов в сутки должно быть по массе 60%, а по - 56% от общего количества пищи.

Глюкоза содержится в крови, в которой ее количество поддерживается на постоянном уровне (0,1-0,12%). После всасывания в кишечнике моносахариды доставляются кровью в , где происходит синтез из моносахаридов гликогена, входящего в состав цитоплазмы. Запасы гликогена откладываются главным образом в мышцах и в печени.

Общее количество гликогена в теле человека массой 70 кг составляет примерно 375 г, из них в мышцах содержится 245 г, в печени - 110 г (до 150 г), в крови и других жидкостях тела - 20 г. В организме тренированного человека гликогена на 40-50% больше, чем у нетренированного.

Углеводы - главный источник энергии для жизнедеятельности и работы организма.

В организме в бескислородных условиях (анаэробных) углеводы распадаются на молочную кислоту, освобождая энергию. Этот процесс называется гликолизом. При участии кислорода (аэробные условия) они расщепляются на углекислоту и , освобождая при этом значительно больше энергии. Большое биологическое значение имеет анаэробный распад углеводов с участием фосфорной кислоты - фосфорилирование.

Фосфорилирование глюкозы происходит в печени при участии ферментов. Источником глюкозы могут быть аминокислоты и жиры. В печени из предварительно фосфорилированной глюкозы образуются огромные молекулы полисахарида - гликогена. Количество гликогена в печени человека зависит от характера питания и мышечной деятельности. С участием других ферментов в печени происходит расщепление гликогена до глюкозы - сахарообразование. Распад гликогена в печени и скелетных мышцах при голодании и мышечной работе сопровождается одновременным синтезом гликогена. Глюкоза, образующаяся в печени, поступает в и с нею доставляется всем клеткам и тканям.

Только небольшая часть белков и жиров освобождает энергию в процессе десмолитического распада и, следовательно, служит непосредственным источником энергии. Значительная часть белков и жиров еще до полного распада предварительно превращается в мышцах в углеводы. Кроме того, из пищеварительного канала продукты гидролиза белков и жиров поступают в печень, где аминокислоты и жиры превращаются в глюкозу. Этот процесс обозначается как глюконеогенез. Основной источник образования глюкозы в печени - гликоген, значительно меньшая часть глюкозы получается путем глюконеогенеза, в процессе которого задерживается образование кетоновых тел. Таким образом, углеводный обмен значительно влияет на обмен , и воды.

Когда потребление глюкозы работающими мышцами возрастает в 5-8 раз, гликоген образуется в печени из жиров и белков.

В отличие от белков и жиров углеводы легко распадаются, поэтому они быстро мобилизуются организмом при больших затратах энергии (мышечная работа, эмоции боли, страха, гнева и др.). Распад углеводов поддерживает постоянство тела и является основным источником энергии мускулатуры. Углеводы необходимы для нормального функционирования нервной системы. Понижение содержания сахара в крови ведет к падению температуры тела, к слабости и утомлению мышц, к расстройствам нервной деятельности.

В тканях используется с освобождением энергии только очень небольшая часть глюкозы, доставляемой кровью. Основной источник углеводного обмена в тканях - гликоген, ранее синтезированный из глюкозы.

Во время работы мышц - основных потребителей углеводов - используются находящиеся в них запасы гликогена, и только после полного израсходования этих запасов начинается непосредственное использование глюкозы, доставляемой к мышцам кровью. При этом расходуется глюкоза, образовавшаяся из запасов гликогена в печени. После работы мышцы возобновляют свой запас гликогена, синтезируя его из глюкозы крови, а печень - за счет всосавшихся моносахаридов в пищеварительном тракте и расщепления белков и жиров.

Например, при увеличении содержания глюкозы в крови выше 0,15-0,16% вследствие обильного содержания её в пище, что обозначается как пищевая гипергликемия, происходит выведение её из организма с мочой – глюкозурия.

С другой стороны, даже при длительном голодании уровень глюкозы в крови не снижается, так как глюкоза поступает в кровь из тканей при распаде находящегося в них гликогена.

Краткая характеристика состава, строения и экологической роли углеводов

Углеводы - это органические вещества, состоящие из углерода, водорода и кислорода, имеющие общую формулу С n (Н 2 O) m (для подавляющего большинства этих веществ).

Величина n или равна m (для моносахаров), или больше ее (для остальных классов углеводов). Вышеприведенная общая формула не соответствует дезоксирибозе.

Углеводы подразделяют на моносахариды, ди (олиго) сахариды и полисахариды. Ниже дается краткая характеристика отдельных представителей каждого класса углеводов.

Краткая характеристика моносахаридов

Моносахариды - это углеводы, общая формула которых С n (Н 2 O) n (исключение составляет дезоксирибоза).

Классификации моносахаридов

Моносахариды - довольно обширная и сложная группа соединений, поэтому они имеют сложную классификацию по различным признакам:

1) по числу углерода, содержащихся в молекуле моносахарида, различают тетрозы, пентозы, гексозы, гептозы; наибольшее практическое значение имеют пентозы и гексозы;

2) по функциональным группам моносахариды делят на кетозы и альдозы;

3) по числу атомов, содержащихся в циклической молекуле моносахарида, различают пиранозы (содержат 6 атомов) и фуранозы (содержат 5 атомов);

4) исходя из пространственного расположения «глюкозидного» гидроксида (этот гидроксид получается при присоединении атома водорода к кислороду карбонильной группы) моносахариды подразделяют на альфа- и бета-формы. Рассмотрим некоторые наиболее важные моносахариды, имеющие наибольшее биологическое и экологическое значение в природе.

Краткая характеристика пентоз

Пентозы - это моносахариды, молекула которых содержит 5 атомов углерода. Эти вещества могут быть и открытоцепными, и циклическими, альдозами и кетозами, альфа- и бета-соединениями. Среди них наиболее практическое значение имеют рибоза и дезоксирибоза.

Формула рибозы в общем виде С 5 Н 10 О 5 . Рибоза является одним из веществ, из которых синтезируются рибонуклеотиды, из последних в дальнейшем получаются различные рибонуклеиновые кислоты (РНК). Поэтому наибольшее значение имеет фуранозная (5-членная) альфа-форма рибозы (в формулах РНК изображается в форме правильного пятиугольника).

Формула дезоксирибозы в общем виде С 5 Н 10 О 4 . Дезоксирибоза - одно из веществ, из которых синтезируются в организмах дезоксирибонуклеотиды; последние являются исходными веществами для синтеза дезоксирибонуклеиновых кислот (ДНК). Поэтому наибольшее значение имеет циклическая альфа-форма дезоксирибозы, у которой отсутствует гидроксид у второго атома углерода в цикле.

Открытоцепные формы рибозы и дезоксирибозы являются альдозами, т. е. содержат 4 (3) гидроксидные группы и одну альдегидную группу. При полном распаде нуклеиновых кислот рибоза и дезоксирибоза окисляются до углекислого газа и воды; этот процесс сопровождается выделением энергии.

Краткая характеристика гексоз

Гексозы - это моносахара, молекулы которых содержат шесть атомов углерода. Общая формула гексоз С 6 (Н 2 O) 6 или С 6 Н 12 O 6 . Все многообразие гексоз является изомерами, соответствующими приведенной выше формуле. Среди гексоз существуют и кетозы, и альдозы, и альфа- и бета-формы молекул, открытоцепные и циклические формы, пиранозные и фуранозные циклические формы молекул. Наибольшее значение в природе имеют глюкоза и фруктоза, которые кратко рассмотрены ниже.

1. Глюкоза. Как и любая гексоза, она имеет общую формулу С 6 Н 12 O 6 . Она относится к альдозам, т. е. содержит альдегидную функциональную группу и 5 гидроксидных групп (характерных для спиртов), следовательно, глюкоза - это многоатомный альдегидоспирт (эти группы содержатся в открытоцепной форме, в циклической форме альдегидная группа отсутствует, так как превращается в гидроксидную группу, называемую «глюкозидным гидроксидом»). Циклическая форма может быть как пятичленной (фуранозной), так и шестичленной (пиранозной). Наибольшее значение в природе имеет пиранозная форма молекулы глюкозы. Циклическая пиранозная и фуранозная формы могут быть как альфа-, так и бета-формами, что зависит от расположения глюкозидного гидроксида относительно других гидроксидных групп в молекуле.

По физическим свойствам глюкоза - твердое белое кристаллическое вещество сладкого вкуса (интенсивность этого вкуса подобна сахарозе), хорошо растворимое в воде и способное к образованию перенасыщенных растворов («сиропов»). Так как в молекуле глюкозы содержатся асимметрические атомы углерода (т. е. атомы, соединенные с четырьмя различными радикалами), то растворы глюкозы обладают оптической активностью, поэтому различают D-глюкозу и L-глюкозу, имеющие различную биологическую активность.

С биологической точки зрения, наиболее важна способность глюкозы к легкому окислению по схеме:

С 6 Н 12 O 6 (глюкоза) → (промежуточные стадии) → 6СO 2 + 6Н 2 O.

Глюкоза - важное в биологическом смысле соединение, так как оно за счет своего окисления используется организмом в качестве универсального питательного вещества и легкодоступного источника энергии.

2. Фруктоза. Это кетоза, ее общая формула С 6 Н 12 O 6 , т. е. она изомер глюкозы, для нее характерны открытоцепная и циклические формы. Наибольшее значение имеет бета-Б-фруктофураноза или сокращенно - бета-фруктоза. Из бета-фруктозы и альфа-глюкозы получается сахароза. В определенных условиях фруктоза способна превращаться в глюкозу при реакции изомеризации. По физическим свойствам фруктоза напоминает глюкозу, но слаще ее.

Краткая характеристика дисахаридов

Дисахариды - продукты реакции диконденсации одинаковых или различных молекул моносахаридов.

Дисахариды являются одной из разновидностей олигосахаридов (в образовании их молекул участвует небольшое количество молекул моносахаридов (одинаковых или различных).

Важнейшим представителем дисахаридов является сахароза (свекловичный или тростниковый сахар). Сахароза - продукт взаимодействия альфа-D-глюкопиранозы (альфа-глюкозы) и бета-D-фруктофуранозы (бета-фруктозы). Ее формула в общем виде С 12 Н 22 О 11 . Сахароза - один из многочисленных изомеров дисахаридов.

Это белое кристаллические вещество, которое существует в различных состояниях: крупнокристаллическом («сахарные головы»), мелкокристаллическом (сахарный песок), аморфном (сахарная пудра). Хорошо растворяется в воде, особенно в горячей (по сравнению с горячей водой, растворимость сахарозы в холодной воде относительно невелика), поэтому сахароза способна образовывать «перенасыщенные растворы» - сиропы, которые могут «засахариваться», т. е. происходит образование мелкокристаллических суспензий. Концентрированные растворы сахарозы способны образовывать особые стеклообразные системы - карамели, что используется человеком для получения определенных сортов конфет. Сахароза - сладкое вещество, но интенсивность сладкого вкуса у нее меньше, чем у фруктозы.

Важнейшим химическим свойством сахарозы является ее способность к гидролизу, при котором образуется альфа-глюкоза и бета-фруктоза, которые вступают в реакции обмена углеводов.

Для человека сахароза является одним из важнейших продуктов питания, так как она - источник глюкозы. Однако избыточное употребление сахарозы вредно, ибо это приводит к нарушению углеводного обмена, что сопровождается появлением заболеваний: диабета, болезней зубов, ожирению.

Общая характеристика полисахаридов

Полисахаридами называют природные полимеры, являющиеся продуктами реакции поликонденсации моносахаридов. В качестве мономеров для образования полисахаридов могут быть пентозы, гексозы и другие моносахариды. В практическом отношении наиболее важны продукты поликонденсации гексоз. Известны и полисахариды, в молекулах которых содержатся атомы азота, например хитин.

Полисахариды на основе гексоз имеют общую формулу (С 6 Н 10 О 5)n. Они не растворимы в воде, при этом некоторые из них способны образовывать коллоидные растворы. Наиболее важными из данных полисахаридов являются различные разновидности растительного и животного крахмала (последние называют гликогенами), а также разновидности целлюлозы (клетчатки).

Общая характеристика свойств и экологической роли крахмала

Крахмал - это полисахарид, являющийся продуктом реакции поликонденсации альфа-глюкозы (альфа-D-глюкопиранозы). По происхождению различают растительные и животные крахмалы. Животные крахмалы называют гликогенами. Хотя в целом молекулы крахмалов имеют общее строение, одинаковый состав, но отдельные свойства у крахмала, полученного из разных растений, различны. Так, картофельный крахмал отличается от кукурузного крахмала и т. д. Но все разновидности крахмала имеют общие свойства. Это твердые, белые мелкокристаллические или аморфные вещества, «хрупкие» на ощупь, нерастворимые в воде, но в горячей воде способны образовывать коллоидные растворы, которые сохраняют свою стабильность и при охлаждении. Крахмал образует как золи (например, жидкий кисель), так и гели (например, кисель, приготовленный при большом содержании крахмала, представляет собой студнеобразную массу, которую можно резать ножом).

Способность крахмала образовывать коллоидные растворы связана с глобулярностью его молекул (молекула как бы свернута в шар). При контакте с теплой или горячей водой молекулы воды проникают между витками молекул крахмала, происходит увеличение объема молекулы и уменьшение плотности вещества, что приводит к переходу молекул крахмала в подвижное состояние, характерное для коллоидных систем. Общая формула крахмала: (С 6 Н 10 О 5) n , молекулы этого вещества имеют две разновидности, одна из которых называется амилоза (в этой молекуле нет боковых цепей), а другая - амилопектин (молекулы имеют боковые цепи, в которых соединение происходит через 1 - 6 атомы углерода кислородным мостиком).

Важнейшим химическим свойством, обусловливающим биолого-экологическую роль крахмала, является его способность подвергаться гидролизу, образуя в конечном счете либо дисахарид мальтозу, либо альфа-глюкозу (это окончательный продукт гидролиза крахмала):

(С 6 Н 10 О 5) n + nН 2 O → nС 6 Н 12 O 6 (альфа-глюкоза).

Процесс протекает в организмах под действием целой группы ферментов. За счет этого процесса организм обогащается глюкозой - важнейшим питательным соединением.

Качественной реакцией на крахмал является его взаимодействие с йодом, при котором возникает красно-фиолетовое окрашивание. Эта реакция используется для обнаружения крахмала в различных системах.

Биолого-экологическая роль крахмала достаточно велика. Это одно из важнейших запасных соединений в организмах растений, например у растений семейства злаковых. Для животных крахмал - важнейшее трофическое вещество.

Краткая характеристика свойств и эколого-биологической роли целлюлозы(клетчатки)

Целлюлоза (клетчатка) - полисахарид, являющийся продуктом реакции поликонденсации бета-глюкозы (бета-D-глюкопиранозы). Ее общая формула (С 6 Н 10 О 5) n . В отличие от крахмала молекулы целлюлозы строго линейны и имеют фибриллярную («нитчатую») структуру. Различие в структурах молекул крахмала и Целлюлозы объясняет различие их биолого-экологических ролей. Целлюлоза не является ни запасным, ни трофическим веществом, так как не способна перевариваться большинством организмов (исключение составляют некоторые виды бактерий, способных подвергать целлюлозу гидролизу и усваивать бета-глюкозу). Целлюлоза не способна образовывать коллоидные растворы, зато она может образовывать механически прочные нитчатые структуры, обеспечивающие защиту отдельных органоидов клетки и механическую прочность различных растительных тканей. Как и крахмал, в определенных условиях целлюлоза гидролизуется, и конечным продуктом ее гидролиза является бета-глюкоза (бета-D-глюкопираноза). В природе роль этого процесса относительно невелика (но она позволяет биосфере «усвоить» целлюлозу).

(С 6 Н 10 О 5) n (клетчатка) + n(Н 2 O) → n(С 6 Н 12 O 6) (бета-глюкоза или бета-D-глюкопираноза) (при неполном гидролизе клетчатки возможно образование растворимого дисахарида - целлобиозы).

В природных условиях клетчатка (после отмирания растений) подвергается разложению, в результате которого возможно образование различных соединений. За счет этого процесса образуются гумус (органический компонент почвы), различные виды каменного угля (нефть и каменный уголь образуются из отмерших остатков различных животных и растительных организмов в отсутствие , т. е. в анаэробных условиях, в их образовании участвует весь комплекс органических веществ, в том числе и углеводов).

Эколого-биологическая роль клетчатки состоит в том, что она является: а) защитным; б) механическим; в) формообразующим соединением (для некоторых бактерий выполняет трофическую функцию). Отмершие остатки растительных организмов являются субстратом для некоторых организмов - насекомых, грибов, различных микроорганизмов.

Краткая характеристика эколого-биологической роли углеводов

Обобщая рассмотренный выше материал, относящийся к характеристике углеводов, можно сделать следующие выводы об их эколого-биологической роли.

1. Они выполняют строительную функцию как в клетках, так и в организме в целом за счет того, что входят в состав структур, образующих клетки и ткани (особенно это характерно для растений и грибов), например, клеточные оболочки, различные мембраны и т. д., кроме того, углеводы участвуют в образовании биологически необходимых веществ, образующих ряд структур, например в образовании нуклеиновых кислот, составляющих основу хромосом; углеводы входят в состав сложных белков - гликопротеидов, имеющих определенное значение в формировании клеточных структур и межклеточного вещества.

2. Важнейшей функцией углеводов является трофическая функция, состоящая в том, что многие из них являются продуктами питания гетеротрофных организмов (глюкоза, фруктоза, крахмал, сахароза, мальтоза, лактоза и др.). Эти вещества в комплексе с другими соединениями образуют пищевые продукты, используемые человеком (различные крупы; плоды и семена отдельных растений, включающие в свой состав углеводы, являются кормом для птиц, а моносахара, вступая в цикл различных превращений, способствуют образованию как собственных углеводов, характерных для данного организма, так и других органо-биохимических соединений (жиров, аминокислот (но не их белков), нуклеиновых кислот и т. д.).

3. Для углеводов характерна и энергетическая функция, состоящая в том, что моносахара (в частности глюкоза) в организмах легко окисляются (конечным продуктом окисления является СO 2 и Н 2 O), при этом происходит выделение большого количества энергии, сопровождающееся синтезом АТФ.

4. Им присуща и защитная функция, состоящая в том, что из углеводов возникают структуры (и определенные органоиды в клетке), защищающие или клетку, или организм в целом от различных повреждений, в том числе и механических (например, хитиновые покровы насекомых, образующие внешний скелет, оболочки клеток растений и многих грибов, включающих целлюлозу и т. д.).

5. Большую роль играют механическая и формообразующая функции углеводов, представляющие собой способность структур, образованных либо углеводами, либо в сочетании их с другими соединениями, придавать организму определенную форму и делать их механически прочными; так, клеточные оболочки механической ткани и сосудов ксилемы создают каркас (внутренний скелет) древесных, кустарниковых и травянистых растений, хитином образован внешний скелет насекомых и т. д.

Краткая характеристика обмена углеводов в гетеротрофном организме (на примере организма человека)

Важную роль в понимании процессов обмена веществ играет знание о превращениях, которым подвергаются углеводы в гетеротрофных организмах. В организме человека этот процесс характеризуется приведенным ниже схематическим описанием.

Углеводы в составе пищи попадают в организм через ротовую полость. Моносахара в пищеварительной системе практически не подвергаются превращениям, дисахариды - гидролизуются до моносахаридов, а полисахариды подвергаются достаточно значительным превращениям (это относится к тем полисахаридам, которые организмом употребляются в пищу, а углеводы, не являющиеся пищевыми веществами, например, целлюлоза, некоторые пектины, удаляются из организма с каловыми массами).

В ротовой полости пища измельчается и гомогенизируется (становится более однородной, чем до попадания в нее). На пищу воздействует слюна, выделяемая слюнными железами. Она содержит птиалин и имеет щелочную реакцию среды, за счет чего начинается первичный гидролиз полисахаридов, приводящий к образованию олигосахаридов (углеводов с небольшой величиной n).

Часть крахмала может превращаться даже в дисахариды, что можно заметить при длительном пережевывании хлеба (кислый черный хлеб становится сладким).

Пережеванная пища, обильно обработанная слюной и размельченная зубами, через пищевод в виде пищевого комка поступает в желудок, где подвергается воздействию желудочного сока с кислой реакцией среды, содержащего ферменты, воздействующие на белки и нуклеиновые кислоты. В желудке с углеводами практически ничего не происходит.

Затем пищевая кашица поступает в первый отдел кишечника (тонкий кишечник), начинающийся двенадцатиперстной кишкой. В нее поступает панкреатический сок (секрет поджелудочной железы), содержащий комплекс ферментов, способствующих и перевариванию углеводов. Углеводы превращаются в моносахариды, которые растворимы в воде и способны к всасыванию. Пищевые углеводы окончательно перевариваются в тонком кишечнике, а в той его части, где содержатся ворсинки, они всасываются в кровь и поступают в кровеносную систему.

С током крови моносахара разносятся к различным тканям и клеткам организма, но предварительно вся кровь проходит через печень (там она очищается от вредных продуктов обмена). В крови моносахара присутствуют преимущественно в виде альфа-глюкозы (но возможно наличие и других изомеров гексоз, например фруктозы).

Если глюкозы в крови меньше нормы, то часть гликогена, содержащегося в печени, гидролизуется до глюкозы. Избыточное содержание углеводов характеризует тяжелое заболевание человека - диабет.

Из крови моносахариды поступают в клетки, где большая их часть расходуется на окисление (в митохондриях), при котором синтезируется АТФ, содержащая энергию в «удобном» для организма виде. АТФ расходуется на различные процессы, которые требуют энергии (синтез нужных организму веществ, реализация физиологических и других процессов).

Часть углеводов пищи используется для синтеза углеводов данного организма, требующихся для формирования структур клетки, или соединений, необходимых для образования веществ других классов соединений (так из углеводов могут получиться жиры, нуклеиновые кислоты и т. д.). Способность углеводов превращаться в жиры является одной из причин возникновения ожирения - заболевания, влекущего за собой комплекс других заболеваний.

Следовательно, потребление избыточного количества углеводов вредно для человеческого организма, что необходимо учитывать при организации рационального питания.

В растительных организмах, являющихся автотрофами, обмен углеводов несколько иной. Углеводы (моносахара) синтезируются самим организмом из углекислого газа и воды с использованием солнечной энергии. Ди-, олиго- и полисахариды синтезируются из моносахаридов. Часть моносахаридов включается в синтез нуклеиновых кислот. Определенное количество моносахаридов (глюкозы) растительные организмы используют в процессах дыхания на окисление, при котором (как и в гетеротрофных организмах) синтезируется АТФ.



Похожие статьи