Углеводы. Виды углеводов

Химические свойства клеток, входящих в состав живых организмов, зависят прежде всего от количества атомов углерода, составляющих до 50% сухой массы. Атомы карбона находятся в главных органических веществах: белках, нуклеиновых кислотах, липидах и углеводах. К последней группе относятся соединения карбона и воды, соответствующие формуле (CH 2 O) n , где n равно или больше трех. Кроме углерода, гидрогена и оксигена, в состав молекул могут входить атомы фосфора, азота, серы. В данной статье мы изучим роль углеводов в организме человека, а также особенности их строения, свойств и функций.

Классификация

Данную группу соединений в биохимии разделяют на три класса: простые сахара (моносахариды), полимерные соединения с гликозидной связью - олигосахариды и биополимеры с большой молекулярной массой - полисахариды. Вещества вышеназванных классов встречаются в различных видах клеток. Например, крахмал и глюкоза имеются в растительных структурах, гликоген - в гепатоцитах человека и клеточных стенках грибов, хитин - в наружном скелете членистоногих. Все вышеперечисленные вещества - это углеводы. Роль углеводов в организме универсальна. Они - основной поставщик энергии для жизненных проявлений бактерий, животных и человека.

Моносахариды

Имеют общую формулу C n H 2 n O n и делятся на группы в зависимости от количества атомов карбона в молекуле: триозы, тетрозы, пентозы и так далее. В составе клеточных органелл и цитоплазме простые сахара имеют две пространственные конфигурации: циклическую и линейную. В первом случае атомы углерода соединяются друг с другом ковалентными сигма-связями и образуют замкнутые циклы, во втором случае углеродный скелет не замкнут и может иметь разветвления. Чтобы определить, какова роль углеводов в организме, рассмотрим наиболее распространенные из них - пентозы и гексозы.

Изомеры: глюкоза и фруктоза

Они имеют одинаковую молекулярную формулу C 6 H 12 O 6 , но различные структурные виды молекул. Ранее мы уже называли главную роль углеводов в живом организме - энергетическую. Вышеназванные вещества расщепляются клеткой. В результате происходит выделение энергии (17,6 кДж из одного грамма глюкозы). Кроме этого, синтезируется 36 молекул АТФ. Распад глюкозы происходит на мембранах (кристах) митохондрий и представляет собой цепь ферментативных реакций - Цикл Кребса. Он является важнейшим звеном диссимиляции, протекающей во всех без исключения клетках гетеротрофных эукариотических организмов.

Глюкоза образуется также в миоцитах млекопитающих вследствие расщепления в мышечной ткани запаса гликогена. В дальнейшем она используется как легко распадающееся вещество, так как обеспечение клеток энергией - это основная роль углеводов в организме. Растения являются фототрофами и самостоятельно образуют глюкозу в процессе фотосинтеза. Эти реакции называются циклом Кальвина. Исходным веществом служит углекислый газ, а акцептором - риболёзодифосфат. Синтез глюкозы происходит в матриксе хлоропластов. Фруктоза, имея такую же молекулярную формулу, как и глюкоза, содержит в молекуле функциональную группу кетонов. Она более сладкая, чем глюкоза, и находится в меде, а также соке ягод и фруктов. Таким образом, биологическая роль углеводов в организме заключается прежде всего в использовании их в качестве быстрого источника получения энергии.

Роль пентоз в наследственности

Остановимся еще на одной группе моносахаридов - рибозе и дезоксирибозе. Их уникальность заключается в том, что они входят в состав полимеров - нуклеиновых кислот. Для всех организмов, включая неклеточные формы жизни, ДНК и РНК являются главными носителями наследственной информации. Рибоза входит в молекулы РНК, а дезоксирибоза содержится в нуклеотидах ДНК. Следовательно, биологическая роль углеводов в организме человека состоит в том, что они участвуют в образовании единиц наследственности - генов и хромосом.

Примерами пентоз, содержащих альдегидную группу и распространенных в растительном мире, являются ксилоза (содержится в стеблях и семенах), альфа-арабиноза (находится в камеди косточковых плодовых деревьев). Таким образом, распространение и биологическая роль углеводов в организме высших растений достаточно велики.

Что такое олигосахариды

Если остатки молекул моносахаридов, например, таких как глюкоза или фруктоза, связаны ковалентными связями, то образуются олигосахариды - полимерные углеводы. Роль углеводов в организме как растений, так и животных разнообразна. Особенно это касается дисахаридов. Наиболее распространены среди них сахароза, лактоза, мальтоза и трегалоза. Так, сахароза, иначе называемая тростниковым или содержится в растениях в виде раствора и запасается в их корнеплодах или стеблях. В результате гидролиза образуются молекулы глюкозы и фруктозы. имеет животное происхождение. У некоторых людей наблюдается непереносимость этого вещества, связанная с гипосекрецией фермента лактазы, который расщепляет молочный сахар на галактозу и глюкозу. Роль углеводов жизнедеятельности организма разнообразна. Например, дисахарид трегалоза, состоящий из двух остатков глюкозы, входит в состав гемолимфы ракообразных, пауков, насекомых. Также он встречается в клетках грибов и некоторых водорослей.

Еще один дисахарид - мальтоза, или солодовый сахар, содержится в зерновках ржи или ячменя при их прорастании, представляет собой молекулу, состоящую из двух остатков глюкозы. Она образуется в результате распада растительного или животного крахмала. В тонком кишечнике человека и млекопитающих мальтоза расщепляется под действием фермента - мальтазы. При его отсутствии в панкреатическом соке возникает патология, обусловленная непереносимостью в продуктах питания гликогена или растительного крахмала. В этом случае используют специальную диету и добавляют в рацион питания сам фермент.

Сложные углеводы в природе

Они распространены очень широко, особенно в растительном мире, являются биополимерами и имеют большую молекулярную массу. Например, в крахмале она равна 800 000, а в целлюлозе - 1 600 000. Полисахариды отличаются между собой составом мономеров, степенью полимеризации, а также длиной цепей. В отличие от простых сахаров и олигосахаридов, которые хорошо растворяются в воде и имеют сладковатый вкус, полисахариды гидрофобны и безвкусны. Рассмотрим роль углеводов в организме человека на примере гликогена - животного крахмала. Он синтезируется из глюкозы и резервируется в гепатоцитах и клетках скелетных мышц, где его содержание в два раза выше, чем в печени. К образованию гликогена способны также подкожная жировая клетчатка, нейроциты и макрофаги. Другой полисахарид - растительный крахмал, является продуктом фотосинтеза и образуется в зеленых пластидах.

С самого начала человеческой цивилизации главными поставщиками крахмала были ценные сельскохозяйственные культуры: рис, картофель, кукуруза. Они до сих пор являются основой пищевого рациона подавляющего большинства жителей Земли. Именно поэтому так ценны углеводы. Роль углеводов в организме состоит, как мы видим, в их применении в качестве энергоемких и быстро усваиваемых органических веществ.

Существует группа полисахаридов, мономерами которых являются остатки гиалуроновой кислоты. Они называются пектинами и являются структурными веществами клеток растений. Особенно богаты ими кожура яблок, жом свеклы. Клеточные вещества пектины регулируют внутриклеточное давление - тургор. В кондитерской промышленности они используются как желеобразующие вещества и загустители при производстве высококачественных сортов зефира и мармелада. В диетическом питании применяются как биологически активные вещества, хорошо выводящие токсины из толстого кишечника.

Что такое гликолипиды

Это интересная группа комплексных соединений углеводов и жиров, находящихся в нервной ткани. Из неё состоит головной и спинной мозг млекопитающих. Гликолипиды встречаются также в составе клеточных мембран. Например, у бактерий они участвуют в Часть этих соединений является антигенами (вещества, выявляющие группы крови системы Ландштейнера АБ0). В клетках животных, растений и человека, кроме гликолипидов, присутствуют и самостоятельные молекулы жиров. Они выполняют прежде всего энергетическую функцию. При расщеплении одного грамма жира выделяется 38,9 кДж энергии. Для липидов характерна также структурная функция (входят в состав клеточных мембран). Таким образом, эти функции выполняют углеводы и жиры. Их роль в организме исключительно велика.

Роль углеводов и липидов в организме

В клетках человека и животных могут наблюдаться взаимные превращения полисахаридов и жиров, происходящие в результате обмена веществ. Учеными-диетологами установлено, что излишнее потребление крахмалистой пищи приводит к накоплению жира. Если человек имеет нарушения со стороны поджелудочной железы в плане выделения амилазы или ведет малоподвижный образ жизни, его вес может сильно увеличиться. Стоит помнить, что богатая углеводами пища расщепляется в основном в двенадцатиперстной кишке до глюкозы. Она всасывается капиллярами ворсинок тонкого кишечника и депонируется в печени и мышцах в виде гликогена. Чем более интенсивный обмен веществ в организме, тем активнее он расщепляется до глюкозы. Затем она используется клетками как основной энергетический материал. Данная информация служит ответом на вопрос о том, какую роль играет углеводы организме человека.

Значение гликопротеидов

Соединения этой группы веществ представлены комплексом углевод + белок. Их еще называют гликоконъюгатами. Это антитела, гормоны, мембранные структуры. Новейшими биохимическими исследованиями установлено: если гликопротеиды начинают изменять свою нативную (природную) структуру, это приводит к развитию таких сложнейших заболеваний, как астма, ревматоидный артрит, рак. Роль гликоконъюгатов в метаболизме клетки велика. Так, интерфероны подавляют размножение вирусов, иммуноглобулины защищают организм от патогенных агентов. Белки крови также относятся к этой группе веществ. Они обеспечивают защитные и буферные свойства. Все вышеперечисленные функции подтверждает тот факт, что физиологическая роль углеводов в организме разнообразна и чрезвычайно важна.

Где и как образуются углеводы

Основные поставщики простых и сложных сахаров - это зеленые растения: водоросли, высшие споровые, голосеменные и цветковые. Все они содержат в клетках пигмент хлорофилл. Он входит в состав тилакоидов - структур хлоропластов. Российский ученый К. А Тимирязев изучил процесс фотосинтеза, в результате которого образуются углеводы. Роль углеводов в организме растения заключается в накоплении крахмала в плодах, семенах и луковицах, то есть в вегетативных органах. Механизм фотосинтеза достаточно сложен и состоит из серии ферментативных реакций, протекающих как на свету, так и в темноте. Глюкоза синтезируется из углекислого газа под действием ферментов. Гетеротрофные организмы используют зеленые растения в качестве источника пищи и энергии. Таким образом, именно растения являются первым звеном во всех и называются продуцентами.

В клетках гетеротрофных организмов углеводы синтезируются на каналах гладкой (агранулярной) эндоплазматической сети. Затем они используются как энергетический и строительный материал. В растительных клетках углеводы дополнительно образуются в комплексе Гольджи, а затем идут на формирование целлюлозной клеточной стенки. В процессе пищеварения позвоночных животных соединения, богатые углеводами, частично расщепляются в ротовой полости и желудке. Основные же реакции диссимиляции происходят в двенадцатиперстной кишке. В неё выделяется поджелудочный сок, содержащий фермент амилазу, расщепляющий крахмал до глюкозы. Как уже было ранее сказано, глюкоза всасывается в кровь в тонком кишечнике и разносится по всем клеткам. Здесь она используется как источник энергии и структурное вещество. Это объясняет, какую роль в организме играют углеводы.

Надмембранные комплексы гетеротрофных клеток

Они характерны для животных и грибов. Химический состав и молекулярная организация этих структур представлены такими соединениями, как липиды, белки и углеводы. Роль углеводов в организме - это участие в и построении мембран. В клетках человека и животных есть особый структурный компонент, называемый гликокаликсом. Этот тонкий поверхностный слой состоит из гликолипидов и гликопротеидов, связанных с цитоплазматической мембраной. Он обеспечивает непосредственную связь клеток с внешней средой. Здесь же происходит восприятие раздражений и внеклеточное пищеварение. Благодаря своей углеводной оболочке клетки слипаются друг с другом, образуя ткани. Это явление называется адгезией. Добавим также, что «хвосты» углеводных молекул находятся над поверхностью клетки и направлены в межтканевую жидкость.

Другая группа гетеротрофных организмов - грибы, также имеет поверхностный аппарат, называемый клеточной стенкой. В неё входят сложные сахара - хитин, гликоген. Некоторые виды грибов содержат также растворимые углеводы, например трегалозу, называемую грибным сахаром.

У одноклеточных животных, таких как инфузории, поверхностный слой - пелликула, также содержит комплексы олигосахаридов с белками и липидами. У некоторых простейших пелликула достаточно тонкая и не мешает изменению формы тела. А у других она утолщается и становится прочной, как панцирь, выполняя защитную функцию.

Клеточная стенка растений

Она также содержит большое количество углеводов, особенно целлюлозы, собранной в виде пучков волокон. Эти структуры формируют каркас, погруженный в коллоидный матрикс. Он состоит в основном из олиго- и полисахаридов. Клеточные стенки растительных клеток могут одревесневать. В этом случае промежутки между пучками целлюлозы заполняются другим углеводом - лигнином. Он усиливает опорные функции клеточной оболочки. Часто, особенно у многолетних древесных растений, наружный слой, состоящий из целлюлозы, покрывается жироподобным веществом - суберином. Он препятствует попаданию внутрь растительных тканей воды, поэтому нижележащие клетки быстро отмирают и покрываются слоем пробки.

Суммируя вышесказанное, мы видим, что в клеточной стенке растений тесно взаимосвязаны углеводы и жиры. Их роль в организме фототрофов трудно недооценить, так как гликолипидные комплексы обеспечивают опорную и защитную функции. Изучим разнообразие углеводов, характерных для организмов царства Дробянки. К нему относятся прокариоты, в частности бактерии. Их клеточная стенка содержит углевод - муреин. В зависимости от строения поверхностного аппарата бактерии разделяют на грамположительные и грамотрицательные.

Строение второй группы более сложное. Эти бактерии имеют два слоя: пластичный и ригидный. Первый содержит мукополисахариды, например муреин. Его молекулы имеют вид крупных сетчатых структур, образующих капсулу вокруг бактериальной клетки. Второй слой состоит из пептидогликана - соединения полисахаридов и белков.

Липополисахариды клеточной стенки позволяют бактериям прочно прикрепляться к различным субстратам, например, к зубной эмали или к мембране эукариотических клеток. Кроме этого, гликолипиды способствуют слипанию бактериальных клеток между собой. Таким путем образуются, например, цепочки стрептококков, грозди стафилококков, более того, некоторые виды прокариот имеют дополнительную слизистую оболочку - пеплос. Она содержит в своем составе полисахариды и легко разрушается под действием жесткого радиационного излучения или при контакте с некоторыми химическими веществами, например антибиотиками.

Для тех, кто хочет потолстеть.

Углеводы Вам помогут.

Как известно, одна молекула жира - это четыре молекулы глюкозы плюс четыре молекулы воды. То есть, при увеличенном употреблении углеводов в сочетании с приемом воды - Вы получите ожидаемый результат. Отмечу только одно, желательно употреблять больше сложных углеводов, ибо простые углеводы могут привести к диабету, гипертонии. Надеюсь, что при современном питании (наборе продуктов в магазинах) у Вас не будет трудностей на этом пути. Основное об углеводах ниже, спасибо «википедии«

(сахара, сахариды) - органические вещества, содержащие карбонильную группу и несколько гидроксильных групп. Название класса соединений происходит от слов «гидраты углерода», оно было впервые предложено К. Шмидтом в 1844 году. Появление такого названия связано с тем, что первые из известных науке углеводов описывались брутто-формулой Cx(H2O)y, формально являясь соединениями углерода и воды.
Углеводы - весьма обширный класс органических соединений, среди них встречаются вещества с сильно различающимися свойствами. Это позволяет углеводам выполнять разнообразные функции в живых организмах. Соединения этого класса составляют около 80 % сухой массы растений и 2-3 % массы животных

Простые и сложные Углеводы

Слева D-глицеральдегид, справа диоксиацетон.

Углеводы являются неотъемлемым компонентом клеток и тканей всех живых организмов представителей растительного и животного мира, составляя (по массе) освную часть оргического вещества на Земле. Источником углеводов для всех живых организмов является процесс фотосинтеза, осуществляемый растениями. По способности к гидролизу на мономеры углеводы делятся на две группы: простые (моносахариды) и сложные (дисахариды и полисахариды). Сложные углеводы, в отличие от простых, способны гидролизоваться с образованием моносахаридов, мономеров. Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Сложные углеводы являются продуктами поликонденсации простых сахаров (моносахаридов), а в процессе гидролитического расщепления образуют сотни и тысячи молекул моносахаридов

Моносахариды

Распространённый в природе моносахарид - бета-D-глюкоза.

Моносахариды (от греческого monos - единственный, sacchar - сахар) - простейшие углеводы, не гидролизующиеся с образованием более простых углеводов - обычно представляют собой бесцветные, легко растворимые вводе, плохо - в спирте и совсем нерастворимые в эфире, твёрдые прозрачные органические соединения, одна из основных групп углеводов, самая простая форма сахара. Водные растворы имеют нейтральную bsp;pH. Некоторые моносахариды обладают сладким вкусом. Моносахариды содержат карбонильную (альдегидную или кетонную) группу, поэтому их можно рассматривать как производные многоатомных спиртов. Моносахарид, у которого карбонильная группа расположена в конце цепи, представляет собой альдегид и называется альдоза. При любом другом положении карбонильной группы моносахарид является кетоном и называется кетоза. В зависимости от длины углеродной цепи (от трёх до десяти атомов) различают триозы, тетрозы, пентозы, гексозы, гептозы и так далее. Среди них наибольшее распространение в природе получили пентозы и гексозы. Моносахариды - стандартные блоки, из которых синтезируются дисахариды, олигосахариды и полисахариды.
В природе в свободном виде наиболее распространена D-глюкоза (виноградный сахар или декстроза, C6H12O6) - шестиатомный сахар (гексоза), структурная единица (мономер) многих полисахаридов (полимеров) -дисахаридов: (мальтозы, сахарозы и лактозы) и полисахаридов (целлюлоза, крахмал). Другие моносахариды, в основном, известны как компоненты ди-, олиго- или полисахаридов и в свободном состоянии встречаются редко. Природные полисахариды служат основными источниками моносахаридов

Дисахариды

Мальтоза(солодовый сахар) - прироный дисахарид, состоящий из двух остатковглюкозы

Мальтоза (солодовый сахар) - природный дисахарид, состоящий из двух остатков глюкозы
Дисахариды (от di - два, sacchar - сахар) - сложные органические соединения, одна из основных групп углеводов, при гидролизе каждая молекула распадается на две молекулы моносахаридов, являются частным сучаемолигосахаридов. По строению дисахариды представляют собой гликозиды, в которых две молекулы моносахаридов соединённы друг с другом гликозидной связью, образованной в результате взаимодействия гидроксильных групп (двух полуацетальных или одной полуацетальной и одной спиртовой). В зависимости от строения дисахариды делятся на две группы: восстанавливающие и невосстанавливающие. Например, в молекуле мальтозы у второго остатка моносахарида (глюкозы) имеется свободный полуацетальный гидроксил, придающий данному дисахариду восстанавливающие свойства. Дисахариды наряду с полисахаридами являются одним из основных источников углеводов в рационе человека и животных

Олигосахариды

Рафиноза - природный трисахарид, состоящий из остатков D-галактозы, D-глюкозы и D-фруктозы.
Олигосахариды - углеводы, молекулы которых синтезированы из 2 - 10 остатков моносахаридов, соединённых гликозидными связями. Соответственно различают: дисахариды, трисахариды и так далее. Олигосахариды, состоящие из одинаковых моносахаридных остатков, называют гомополисахаридами, а из разных - гетерополисахаридами. Наиболее распространены среди олигосахаридов дисахариды.
Среди природных трисахаридов наиболее распространена рафиноза - невосстанавливающий олигосахарид, содержащий остатки фруктозы, глюкозы и галактозы - в больших количествах содержится в сахарной свёкле и во многих других растениях

Полисахариды

Полисахариды - общее название класса сложных высокомолекулярных углеводов, молекулы которых состоят из десятков, сотен или тысяч мономеров - моносахаридов. С точки зрения общих принципов строения в группе полисахаридов возможно различить гомополисахариды, синтезированные из однотипных моносахаридных единиц и гетерополисахариды, для которых характерно наличие двух или нескольких типов мономерных остатков.
Гомополисахариды (гликаны), состоящие из остатков одного моносахарида, могут быть гексозами или пентозами, то есть в качестве мономера может быть использована гексоза или пентоза. В зависимости от химической природы полисахарида различают глюканы (из остатков глюкозы), маннаны (из маннозы), галактаны (из галактозы) и другие подобные соединения. К группе гомополисахаридов относятся органические соединения растительного (крахмал, целлюлоза, пектиновые вещества), животного (гликоген, хитин) и бактериального (декстраны) происхождения.
Полисахариды необходимы для жизнедеятельности животных и растительных организмов. Это один из основных источников энергии организма, образующейся в результате обмена веществ. Полисахариды принимают участие в иммунных процессах, обеспечивают сцепление клеток в тканях, являются основной массой органического вещества в биосфере.

Слева - крахмал, справа - гликоген.

Крахмал

(C6H10O5)n - смесь двух гомополисахаридов: линейного - амилозы и разветвлённого - амилопектина, мономером которых является альфа-глюкоза. Белое аморфное вещество, не растворимое в холодной воде, способное к набуханию и частично растворимое в горячей воде. Молекулярная масса 105-107 Дальтон. Крахмал, синтезируемый разными растениями в хлоропластах, под действием света при фотосинтезе, несколько различается по структуре зёрен, степени полимеризации молекул, строению полимерных цепей и физико-химическим свойствам. Как правило, содержание амилозы в крахмале составляет 10-30 %, амилопектина - 70-90 %. Молекула амилозы содержит в среднем около 1 000 остатков глюкозы, связанных между собой альфа-1,4-связями. Отдельные линейные участки молекулы амилопектина состоят из 20-30 таких единиц, а в точках ветвления амилопектина остатки глюкозы связаны межцепочечными альфа-1,6-связями. При частичном кислотном гидролизе крахмала образуются полисахариды меньшей степени полимеризации - декстрины (C6H10O5)p, а при полном гидролизе - глюкоза.
Гликоген (C6H10O5)n - полисахарид, построенный из остатков альфа-D-глюкозы - главный резервный полисахарид высших животных и человека, содержится в виде гранул в цитоплазме клеток практически во всех органах и тканях, однако, наибольшее его количество накапливается в мышцах и печени. Молекула гликогена построена из ветвящихся полиглюкозидных цепей, в линейной последовательности которых, остатки глюкозы соединены посредством альфа-1,4-связями, а в точках ветвления межцепочечными альфа-1,6-связями. Эмпирическая формула гликогена идентична формуле крахмала. По химическому строению гликоген близок к амилопектину с более выраженной разветвлённостью цепей, поэтому иногда называется неточным термином «животный крахмал». Молекулярная масса 105-108 Дальтон и выше. В организмах животных является структурным и функциональным аналогом полисахарида растений - крахмала. Гликоген образует энергетический резерв, который при необходимости восполнить внезапный недостаток глюкозы может быть быстро мобилизован - сильное разветлние его молекулы ведёт к наличию большого числа концевых остатков, обеспечивающих возможность быстрого отщепления нужного количества молекул глюкозы. В отличие от запаса триглицеридов (жиров) запас гликогена не настолько ёмок (в калориях на грамм). Только гликоген, запасённый в клетках печени (гепатоцитах) может быть переработан в глюкозу для питания всего организма, при этом гепатоциты способны накапливать до 8 процентов своего веса в виде гликогена, что является максимальной концентрацией среди всех видов клеток. Общая масса гликогена в печени взрослых может достигать 100-120 граммов. В мышцах гликоген расщепляется на глюкозу исключительно для локального потребления и накапливается в гораздо меньших концентрациях (не более 1 % от общей массы мышц), тем не менее общий запас в мышцах может превышать запас, накопленный в гепатоцитах.

Целлюлоза (клетчатка) - наиболее распространённый структурный полисахарид растительного мира, состоящий из остатков альфа-глюкозы, представленных в бета-пиранозной форме. Таким образом, в молекуле целлюлозы бета-глюкопиранозные мономерные единицы линейно соединены между собой бета-1,4-связями. При частичном гидролизе целлюлозы образуется дисахарид целлобиоза, а при полном - D-глюкоза. В желудочно-кишечном тракте человека целлюлоза не переваривается, так как набор пищеварительных ферментов не содержит бета-глюкозидазу. Тем не менее, наличие оптимального количества растительной клетчатки в пище способствует нормальному формированию каловых масс. Обладая большой механической прочностью, целлюлоза выполняет роль опорного материала растений, например, в составе древесины её доля варьирует от 50 до 70 %, а хлопок представляет собой практически стопроцентную целлюлозу.
Хитин - структурный полисахарид низших растений, грибов и беспозвоночных животных (в основном роговые оболочки членистоногих - насекомых и ракообразных). Хитин, подобно целлюлозе в растениях, выполняет опорные и механические функции в организмах грибов и животных. Молекула хитина построена из остатков N-ацетил-D-глюкозамина, связанных между собой бета-1,4-гликозиюными связями. Макромолекулы хитина неразветвлённые и их пространственная укладка не имеет ничего общего с целлюлозой.
Пектиновые вещества - полигалактуроновая кислота, содержится в плодах и овощах, остатки D-галактуроновой кислоты связаны альфа-1,4-гликозидными связями. В присутствии органических кислот спосбны к желеобразованию, применяются в пищевой промышленности для приготовления желе и мармелада. Некоторые пектиновые вещества оказывают противоязвенный эффект и являются активной составляющей ряда фармацевтических препаратов, например, производное подорожника «плантаглюцид».
Мурамин - полисахарид, опорно-механический материал клеточной стенки бактерий. По химическому строению представляет собой неразветвлённую цепь, построенную из чередующихся остатков N-ацетилглюкозамина и N-ацетилмурамовой кислоты, соединённых бета-1,4-гликозидной связью. Мурамин по структурной организации (неразветвлённая цепь бета-1,4-полиглюкопиранозного скелета) и функциональной роли весьма близок к хитину и целлюлозе.
Декстран полсахариды бактериального происхождения - синтезируются в условиях промышленного производства микробиологическим путём (воздействием микроорганизмов Leuconostoc mesenteroides на раствор сахарозы) и используются в качестве заменителей плазмы крови (так называемые клинические «декстраны»: Полиглюкин и другие).

Слева D-глицеральдегид, справа L-глицеральдегид.

Пространственная изомерия

Изомерия - существование химических соединений (изомеров), одинаковых по составу и молекулярной массе, различающихся по строению или расположению атомов в пространстве и, вследствие этого, по свойствам.
Стереоизомерия моносахаридов: изомер глицеральдегида у которого при проецировании модели на плоскость ОН-группа у асимметричного атома углерода расположена с правой стороны принято считать D-глицеральдегидом, а зеркальное отражение - L-глицеральдегидом. Все изомеры моносахаридов делятся на D- и L- формы по сходству расположения ОН-группы у последнего асимметричного атома углерода возле СН2ОН-группы (кетозы содержат на один асимметричный атом углерода меньше, чем альдозы с тем же числом атомов углерода). Природные гексозы - глюкоза, фруктоза, манноза и галактоза - по стереохимической конфигурациям относят к соединениям D-ряда.

Биологическая роль
В живых организмах углеводы выполняют следующие функции:
Структурная и опорная функции. Углеводы участвуют в построении различных опорных структур. Так целлюлоза является основным структурным компонентом клеточных стенок растений, хитин выполняет аналогичную функцию у грибов, а также обеспечивает жёсткость экзоскелета членистоногих.
Защитная роль у растений. У некоторых растений есть защитные образования (шипы, колючки и др.), состоящие из клеточных стенок мёртвых клеток.
Пластическая функция. Углеводы входят в состав сложных молекул (например, пентозы (рибоза и дезоксирибоза) участвуют в построении АТФ, ДНК и РНК).
Энергетическая функция. Углеводы служат источником энергии: при окислении 1 грамма углеводов выделяются 4,1 ккал энергии и 0,4 г воды.
Запасающая функция. Углеводы выступают в качестве запасных питательных веществ: гликоген у животных, крахмал и инулин - у растений.
Осмотическая функция. Углеводы участвуют в регуляции осмотического давления в организме. Так, в крови содержится 100-110 мг/% глюкозы, от концентрации глюкозы зависит осмотическое давление крови.
Рецепторная функция. Олигосахариды входят в состав воспринимающей части многих клеточных рецепторов или молекул-лигандо Биосинтез
В суточном рационе человека и животных преобладают углеводы. Травоядные получают крахмал, клетчатку, сахарозу. Хищники получают гликоген с мясом.
Организмы животных не способны синтезировать углеводы из неорганических веществ. Они получают их от растений с пищей и используют в качестве главного источника энергии, получаемой в процессе окисления: В зеленых листьях растений углеводы образуются в процессе фотосинтеза - уникального биологического процесса превращения в сахара неорганических веществ - оксида углерода (IV) и воды, происходящего при участии хлорофилла за счёт солнечной энергии: Обмен углеводов в организме человека и высших животных складывается из нескольких процессов:
Гидролиз (расщепление) в желудочно-кишечном тракте полисахаридов и дисахаридов пищи до моносахаридов, с последующим всасыванием из просвета кишки в кровеносное русло.
Гликогеногенез (синтез) и гликогенолиз (распад) гликогена в тканях, в основном в печени.
Аэробный (пентозофосфатный путь окисления глюкозы или пентозный цикл) и анаэробный (без потребления кислорода) гликолиз - пути расщепления глюкозы в организме.
Взаимопревращение гексоз.
Аэробное окисление продукта гликолиза - пирувата (завершающая стадия углеводного обмена).
Глюконеогенез - синтез углеводов из неуглеводистого сырья (пировиноградная, молочная кислота, глицерин, аминокислоты и другие органические соединения).
[править]Важнейшие источники
Главными источниками углеводов из пищи являются: хлеб, картофель, макароны, крупы, сладости. Чистым углеводом является сахар. Мёд, в зависимости от своего происхождения, содержит 70-80 % глюкозы и фруктозы.
Для обозначения количества углеводов в пище используется специальная хлебная единица.
К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины.

Список наиболее распространенных углеводов

  • Моносахариды
  • Олигосахариды

  • сахароза(обычныйсахар, тростниковый или свекловичный)

  • Полисахариды

  • галактоманнаны

  • Гликозаминогликаны(Мукополисахариды)

  • хондроитин-сульфат

  • гиалуроновая кислота

  • гепаран-сульфат

  • дерматан-сульфат

  • кератан-сульфат

Глюкоза – наиболее важный из всех моносахаридов, так как она является структурной единицей большинства пищевых ди- и полисахаридов. В процессе обмена веществ они расщепляются на отдельные молекулы моносахаридов, которые в ходе многостадийных химических реакций превращаются в другие вещества и в конечном итоге окисляются до углекислого газа и воды – используются как «топливо» для клеток. Глюкоза – необходимый компонент обмена углеводов . При снижении ее уровня в крови или высокой концентрации и невозможности использования, как это происходит при диабете, наступает сонливость, может наступить потеря сознания (гипогликемическая кома). Глюкоза «в чистом виде», как моносахарид, содержится в овощах и фруктах. Особенно богаты глюкозой виноград – 7,8%, черешня, вишня – 5,5%, малина – 3,9%, земляника – 2,7%, слива – 2,5%, арбуз – 2,4%. Из овощей больше всего глюкозы содержится в тыкве – 2,6%, в белокочанной капусте – 2,6%, в моркови – 2,5%.

Глюкоза обладает меньшей сладостью, чем самый известный дисахарид – сахароза. Если принять сладость сахарозы за 100 единиц, то сладость глюкозы составит 74 единицы.

Фруктоза является одним из самых распространенных углеводов фруктов. В отличие от глюкозы она может без участия инсулина проникать из крови в клетки тканей. По этой причине фруктоза рекомендуется в качестве наиболее безопасного источника углеводов для больных диабетом. Часть фруктозы попадает в клетки печени, которые превращают ее в более универсальное «топливо» - глюкозу, поэтому фруктоза тоже способна повышать сахара в крови, хотя и в значительно меньшей степени, чем другие простые сахара. Фруктоза легче, чем глюкоза, способна превращаться в жиры. Основным преимуществом фруктозы является то, что она в 2,5 раза слаще глюкозы и в 1,7 – сахарозы. Ее применение вместо сахара позволяет снизить общее потребление углеводов .

Основными источниками фруктозы в пище являются виноград – 7,7%, яблоки – 5,5%, груши – 5,2%, вишня, черешня – 4,5%, арбузы – 4,3%, черная смородина – 4,2%, малина – 3,9%, земляника – 2,4%, дыни – 2,0%. В овощах содержание фруктозы невелико – от 0,1% в свекле до 1,6% в белокочанной капусте. Фруктоза содержится в меде – около 3,7%. Достоверно доказано, что фруктоза, обладающая значительно более высокой сладостью, чем сахароза, не вызывает кариеса, которому способствует потребление сахара.

Галактоза в продуктах в свободном виде не встречается. Она образует дисахарид с глюкозой – лактозу (молочный сахар) – основной углевод молока и молочных продуктов.

Лактоза расщепляется в желудочно-кишечном тракте до глюкозы и галактозы под действием фермента лактазы. Дефицит этого фермента у некоторых людей приводит к непереносимости молока. Нерасщепленная лактоза служит хорошим питательным веществом для кишечной микрофлоры. При этом возможно обильное газообразование, живот «пучит». В кисломолочных продуктах большая часть лактозы сброжена до молочной кислоты, поэтому люди с лактазной недостаточностью могут переносить кисломолочные продукты без неприятных последствий. Кроме того, молочнокислые бактерии в кисломолочных продуктах подавляют деятельность кишечной микрофлоры и снижают неблагоприятные действия лактозы.

Галактоза, образующаяся при расщеплении лактозы, превращается в печени в глюкозу. При врожденном наследственном недостатке или отсутствии фермента, превращающего галактозу в глюкозу, развивается тяжелое заболевание - галактоземия, которая ведет к умственной отсталости.

Дисахарид, образованный молекулами глюкозы и фруктозы, - это сахароза. Содержание сахарозы в сахаре 99,5%. То, что сахар – это «белая смерть», любители сладкого знают так же хорошо, как курильщики то, что капля никотина убивает лошадь. К сожалению, обе эти прописные истины чаще служат поводом для шуток, чем для серьезных размышлений и практических выводов.

Сахар быстро расщепляется в желудочно-кишечном тракте, глюкоза и фруктоза всасываются в кровь и служат источником энергии и наиболее важным предшественником гликогена и жиров. Его часто называют «носителем пустых калорий», так как сахар – это чистый углевод и не содержит других питательных веществ, таких, как, например, витамины, минеральные соли. Из растительных продуктов больше всего сахарозы содержится в свекле – 8,6%, персиках – 6,0%, дынях – 5,9%, сливах – 4,8%, мандаринах – 4,5%. В овощах, кроме свеклы, значительное содержание сахарозы отмечается в моркови – 3,5%. В остальных овощах содержание сахарозы колеблется от 0,4 до 0,7%. Кроме собственно сахара, основными источниками сахарозы в пище являются варенье, мед, кондитерские изделия, сладкие напитки, мороженое.

При соединении двух молекул глюкозы образуется мальтоза - солодовый сахар. Ее содержат мед, солод, пиво, патока и хлебобулочные и кондитерские изделия, изготовленные с добавлением патоки.

Все полисахариды, представленные в пище человека, за редкими исключениями, являются полимерами глюкозы.

Крахмал – основной из перевариваемых полисахаридов. На его долю приходится до 80% потребляемых с пищей углеводов .

Источником крахмала служат растительные продукты, в основном злаковые: крупы, мука, хлеб, а также картофель. Больше всего крахмала содержат крупы: от 60% в гречневой крупе (ядрице) до 70% - в рисовой. Из злаков меньше всего крахмала содержится в овсяной крупе и продуктах ее переработки: толокне, овсяных хлопьях «Геркулес» - 49%. Макаронные изделия содержат от 62 до 68% крахмала, хлеб из ржаной муки в зависимости от сорта – от 33% до 49%, пшеничный хлеб и другие изделия из пшеничной муки – от 35 до 51% крахмала, мука – от 56 (ржаная) до 68% (пшеничная высшего сорта). Крахмала много и в бобовых продуктах – от 40% в чечевице до 44% в горохе. По этой причине сухие горох, фасоль, чечевицу, нут относят к зернобобовым. Особняком стоят соя, которая содержит только 3,5% крахмала, и соевая мука (10-15,5%). По причине высокого содержания крахмала в картофеле (15-18%) в диетологии его относят не к овощам, где основные углеводы представлены моносахариды и дисахаридами, а к крахмалистым продуктам наравне со злаковыми и зернобобовыми.

В топинамбуре и некоторых других растениях углеводы запасаются в виде полимера фруктозы -инулина. Пищевые продукты с добавкой инулина рекомендуют при диабете и особенно – для его профилактики (напомним, что фруктоза дает меньшую нагрузку на поджелудочную железу, чем другие сахара).

Гликоген - «животный крахмал» - состоит из сильно разветвленных цепочек молекул глюкозы. Он в небольших количествах содержится в животных продуктах (в печени 2-10%, в мышечной ткани – 0,3-1%).

Сахарный диабет (СД) - эндокринное заболевание, характеризующееся синдромом хронической гипергликемии, являющейся следствием недостаточной продукции или действия инсулина, что приводит к нарушению всех видов обмена веществ, прежде всего углеводного, поражению сосудов (ангиопатии), нервной системы (нейропатии), а также других органов и систем. Согласно определению ВОЗ (1985) - сахарный диабет - состояние хронической …


§ 1. КЛАССИФИКАЦИЯ И ФУНКЦИИ УГЛЕВОДОВ

Еще в древние времена человечество познакомилось с углеводами и научилось использовать их в своей повседневной жизни. Хлопок, лен, древесина, крахмал, мед, тростниковый сахар – это всего лишь некоторые из углеводов, сыгравшие важную роль в развитие цивилизации. Углеводы относятся к числу наиболее распространенных в природе органических соединений. Они являются неотъемлемыми компонентами клеток любых организмов, в том числе бактерий, растений и животных. В растениях на долю углеводов приходится 80 – 90 % сухой массы, у животных – около 2 % массы тела. Их синтез из углекислого газа и воды осуществляется зелеными растениями с использованием энергии солнечного света (фотосинтез ). Суммарное стехиометрическое уравнение этого процесса имеет вид:

Затем глюкоза и другие простейшие углеводы превращаются в более сложные углеводы, например, крахмал и целлюлозу. Растения используют эти углеводы для высвобождения энергии в процессе дыхания. Этот процесс в сущности обратен процессу фотосинтеза:

Интересно знать! Зеленые растения и бактерии в процессе фотосинтеза ежегодно поглощают из атмосферы приблизительно 200 млрд. т углекислого газа. При этом происходит высвобождение в атмосферу около 130 млрд. т кислорода и синтезируется 50 млрд. т органических соединений углерода, в основном углеводов.

Животные не способны из углекислого газа и воды синтезировать углеводы. Потребляя углеводы с пищей, животные расходуют накопленную в них энергию для поддержания процессов жизнедеятельности. Высоким содержанием углеводов характеризуются такие виды нашей пищи, как хлебобулочные изделия, картофель, крупы и др.

Название «углеводы» является историческим. Первые представители этих веществ описывались суммарной формулой С m H 2 n O n или C m (H 2 O) n . Другое название углеводов – сахара – объясняется сладким вкусом простейших углеводов. По своей химической структуре углеводы – сложная и многообразная группа соединений. Среди них встречаются как достаточно простые соединения с молекулярной массой около 200, так и гигантские полимеры, молекулярная масса которых достигает нескольких миллионов. Наряду с атомами углерода, водорода и кислорода в состав углеводов могут входить атомы фосфора, азота, серы и, реже, других элементов.

Классификация углеводов

Все известные углеводы можно подразделить на две большие группыпростые углеводы и сложные углеводы . Отдельную группу составляют углеводсодержащие смешанные полимеры, например, гликопротеины – комплекс с молекулой белка, гликолипиды – комплекс с липидом, и др.

Простые углеводы (моносахариды, или монозы) являются полигидроксикарбонильными соединениями, не способными при гидролизе образовывать более простые углеводные молекулы. Если моносахариды содержат альдегидную группу, то они относятся к классу альдоз (альдегидоспиртов), если кетонную – к классу кетоз (кетоспиртов). В зависимости от числа углеродных атомов в молекуле моносахаридов различают триозы (С 3), тетрозы (С 4), пентозы (С 5), гексозы (С 6) и т.д.:


Наиболее часто в природе встречаются пентозы и гексозы.

Сложные углеводы (полисахариды , или полиозы ) представляют собой полимеры, построенные из остатков моносахаридов. Они при гидролизе образуют простые углеводы. В зависимости от степени полимеризации их подразделяют на низкомолекулярные (олигосахариды , степень полимеризации которых, как правило, меньше 10) и высокомолекулярные . Олигосахариды – сахароподобные углеводы, растворимые в воде и сладкие на вкус. Их по способности восстанавливать ионы металлов (Cu 2+ , Ag +) делят на восстанавливающие и невосстанавливающие . Полисахариды в зависимости от состава можно также разделить на две группы: гомополисахариды и гетерополисахариды . Гомополисахариды построены из моносахаридных остатков одного типа, а гетерополисахариды – из остатков разных моносахаридов.

Сказанное с примерами наиболее распространенных представителей каждой группы углеводов можно представить в виде следующей схемы:


Функции углеводов

Биологические функции полисахаридов весьма разнообразны.

Энергетическая и запасающая функция

В углеводах заключено основное количество калорий, потребляемых человеком с пищей. Основным углеводом, поступающим с пищей, является крахмал. Он содержится в хлебобулочных изделиях, картофеле, в составе круп. В рационе человека присутствуют также гликоген (в печени и мясе), сахароза (в качестве добавок к различным блюдам), фруктоза (во фруктах и меде), лактоза (в молоке). Полисахариды, прежде чем усвоиться организмом, должны быть гидролизованы с помощью пищеварительных ферментов до моносахаридов. Только в таком виде они всасываются в кровь. С током крови моносахариды поступают к органам и тканям, где используются для синтеза своих собственных углеводов или других веществ, либо подвергаются расщеплению с целью извлечения из них энергии.

Освобождающаяся в результате расщепления глюкозы энергия накапливается в виде АТФ. Различают два процесса распада глюкозы: анаэробный (в отсутствие кислорода) и аэробный (в присутствии кислорода). В результате анаэробного процесса образуется молочная кислота

которая при тяжелых физических нагрузках накапливается в мышцах и вызывает боль.

В результате же аэробного процесса глюкоза окисляется до оксида углерода (IV) и воды:

В результате аэробного распада глюкозы освобождается значительно больше энергии, чем в результате анаэробного. В целом при окислении 1 г углеводов выделяется 16,9 кДж энергии.

Глюкоза может подвергаться спиртовому брожению. Этот процесс осуществляется дрожжами в анаэробных условиях:

Спиртовое брожение широко используется в промышленности для производства вин и этилового спирта.

Человек научился использовать не только спиртовое брожение, но и нашел применение молочнокислому брожению, например, для получения молочнокислых продуктов и квашения овощей.

В организме человека и животных нет ферментов, способных гидролизовать целлюлозу, тем не менее целлюлоза является основным компонентом пищи для многих животных, в частности, для жвачных. В желудке этих животных в больших количествах содержатся бактерии и простейшие, продуцирующие фермент целлюлазу , катализирующий гидролиз целлюлозы до глюкозы. Последняя может подвергаться дальнейшим превращениям, в результате которых образуются масляная, уксусная, пропионовая кислоты, способные всасываться в кровь жвачных.

Углеводы выполняют и запасную функцию. Так, крахмал, сахароза, глюкоза у растений и гликоген у животных являются энергетическим резервом их клеток.

Структурная, опорная и защитная функции

Целлюлоза у растений и хитин у беспозвоночных и в грибах выполняют опорную и защитную функции. Полисахариды образуют капсулу у микроорганизмов, укрепляя тем самым мембрану. Липополисахариды бактерий и гликопротеины поверхности животных клеток обеспечивают избирательность межклеточного взаимодействия и иммунологических реакций организма. Рибоза служит строительным материалом для РНК, а дезоксирибоза – для ДНК.

Защитную функцию выполняет гепарин . Этот углевод, являясь ингибитором свертывания крови, предотвращает образование тромбов. Он содержится в крови и соединительной ткани млекопитающих. Клеточные стенки бактерий, образованные полисахаридами, скреплены короткими аминокислотными цепочками, защищают бактериальные клетки от неблагоприятных воздействий. Углеводы участвуют у ракообразных и насекомых в построение наружного скелета, выполняющего защитную функцию.

Регуляторная функция

Клетчатка усиливает перистальтику кишечника, улучшая этим пищеварение.

Интересна возможность использования углеводов в качестве источника жидкого топлива – этанола. С давних пор использовали древесину для обогрева жилищ и приготовления пищи. В современном обществе этот вид топлива вытесняется другими видами – нефтью и углем, более дешевыми и удобными в использовании. Однако растительное сырье, несмотря на некоторые неудобства в использовании, в отличие от нефти и угля является возобновляемым источником энергии. Но его применение в двигателях внутреннего сгорания затруднено. Для этих целей предпочтительнее использовать жидкое топливо или газ. Из низкосортной древесины, соломы или другого растительного сырья, содержащих целлюлозу или крахмал, можно получить жидкое топливо – этиловый спирт. Для этого необходимо вначале гидролизовать целлюлозу или крахмал и получить глюкозу:

а затем полученную глюкозу подвергнуть спиртовому брожению и получить этиловый спирт. После очистки его можно использовать в виде топлива в двигателях внутреннего сгорания. Надо отметить, что в Бразилии с этой целью ежегодно из сахарного тростника, сорго и маниока получают миллиарды литров спирта и используют его в двигателях внутреннего сгорания.

, в зависимости от своего происхождения, содержит 70—80 % сахара.К углеводной группе, кроме того, примыкают и плохо перевариваемые человеческим организмом клетчатка и пектины .

Из всех потребляемых человеком пищевых веществ углеводы, несомненно, являются главным источником энергии. В среднем на их долю приходится от 50 до 70% калорийности дневных рационов. Несмотря на то, что человек потребляет значительно больше углеводов, чем жиров и белков, их резервы в организме невелики. Это означает, что снабжение ими организма должно быть регулярным.

Потребности в углеводах в очень большой степени зависят от энергетических трат организма. В среднем у взрослого мужчины, занятого преимущественно умственным или легким физическим трудом, суточная потребность в углеводах колеблется от 300 до 500 г. У работников физического труда и спортсменов она значительно выше. В отличие от белков и в известной степени жиров, количество углеводов в рационах питания без вреда для здоровья может быть существенно снижено. Тем, кто хочет похудеть, стоит обратить на это внимание: углеводы имеют главным образом энергетическую ценность. При окислении 1 г углеводов в организме освобождается 4,0 – 4,2 ккал. Поэтому за их счет легче всего регулировать калорийность питания.

Углеводы (сахариды) — общее название обширного класса природных органических соединений. Общую формулу моносахаридов можно написать как С n (Н 2 О) n . В живых организмах наиболее распространены сахара с 5-ю (пентозы) и с 6-ю (гексозы) атомами углерода.

Углеводы делятся на группы:

Простые углеводы легко растворяются в воде и синтезируются в зелёных растениях. Кроме небольших молекул, в клетке встречаются и крупные, они являются полимерами. Полимеры – это сложные молекулы, состоящие из отдельных «звеньев», соединенных друг с другом. Такие «звенья» называются мономерами. Такие вещества, как крахмал, целлюлоза и хитин, являются полисахаридами – биологическими полимерами.

К моносахаридам относятся глюкоза и фруктоза, придающие сладость фруктам и ягодам. Пищевой сахар сахароза состоит из ковалентно присоединенных друг к другу глюкозы и фруктозы. Подобные сахарозе соединения называются дисахаридами. Поли-, ди- и моносахариды называют общим термином – углеводы. К углеводам относятся соединения, обладающие разнообразными и часто совершенно различными свойствами.


Таблица: Многообразие углеводов и их свойства.

Группа углеводов

Примеры углеводов

Где встречаются

свойства

моносахара

рибоза

РНК

дезоксирибоза

ДНК

глюкоза

Свекловичный сахар

фруктоза

Фрукты, мед

галактоза

В состав лактозы молока

олигосахариды

мальтоза

Солодовый сахар

Сладкие на вкус, растворимые в воде, кристаллические,

сахароза

Тростниковый сахар

Лактоза

Молочный сахар в молоке

Полисахариды (построены из линейных или разветвленных моносахаров)

Крахмал

Растительный запасной углевод

Не сладкие, белого цвета, не растворяются в воде.

гликоген

Запасной животный крахмал в печени и мышцах

Клетчатка (целлюлоза)

хитин

муреин

воды . Для многих клеток человека (например, клеток мозга и мышц) глюкоза, приносимая кровью, служит главным источником энергии.Крахмал и очень похожее на него вещество животных клеток – гликоген – являются полимерами глюкозы, они служат для запасания ее внутри клетки.

2. Структурная функция, то есть участвуют в построении разных клеточных структур.

Полисахарид целлюлоза образует клеточные стенки растительных клеток, отличающиеся твердостью и жесткостью, она – один из главных компонентов древесины. Другими компонентами являются гемицеллюлоза, также принадлежащая к полисахаридам, и лигнин (он имеет не углеводную природу). Хитин тоже выполняет структурные функции. Хитин выполняет опорную и защитную функции.Клеточные стенки большинства бактерий состоят из пептидогликана муреина – в состав этого соединения входят остатки как моносахаридов, так и аминокислот.

3. Углеводы выполняют защитную роль у растений (клеточные стенки, состоящие из клеточных стенок мертвых клеток защитные образования — шипы, колючки и др.).

Общая формула глюкозы – С 6 Н 12 О 6 , это альдегидоспирт. Глюкоза содержится во многих фруктах, соках растений и цветочном нектаре, а также в крови человека и животных. Содержание глюкозы в крови поддерживается на определенном уровне (0,65–1,1 г на л). Если искусственно снизить его, то клетки мозга начинают испытывать острое голодание, которое может закончиться обмороком, комой и даже смертельным исходом. Длительное повышение содержания глюкозы в крови тоже отнюдь не полезно: при этом развивается заболевание сахарный диабет.

Млекопитающие, и человек в том числе, могут синтезировать глюкозу из некоторых аминокислот и продуктов расщепления самой глюкозы – например, молочной кислоты. Они не умеют получать глюкозу из жирных кислот, в отличие от растений и микробов.

Взаимопревращения веществ.

Избыток белка------углеводы

Избыток жиров--------------углеводы

План:

1.Определение понятия: углеводы. Классификация.

2. Состав, физические и химические свойства углеводов.

3.Рспространение в природе. Получение. Применение.

Углеводы – органические соединения, содержащие карбонильные и гидроксильные группировки атомов, имеющие общую формулу C n (H 2 O) m , (где n и m>3).

Углеводы – вещества, имеющие первостепенное биохимическое значение, широко распространены в живой природе и играют большую роль в жизни человека. Название углеводы возникло на основании данных анализа первых известных представителей этой группы соединения. Вещества этой группы состоят из углерода, водорода и кислорода, причем соотношение чисел атомов водорода и кислорода в них такое же, как и в воде, т.е. на каждые 2 атома водорода приходится один атом кислорода. В прошлом столетии их рассматривали как гидраты углерода. Отсюда и возникло русское название углеводы, предложенное в 1844г. К.Шмидтом. Общая формула углеводов, согласно сказанному, С м Н 2п О п. При вынесении «n» за скобки получается формула С м (Н 2 О) n , которая очень наглядно отражает название «угле - воды». Изучение углеводов показало, что существуют соединения, которые по всем свойствам нужно отнести в группу углеводов, хотя они имеют состав, не точно соответствующий формуле С м H 2п О п. Тем не менее старинное название «углеводы», сохранилось до наших дней, хотя наряду с этим названием для обозначения рассматриваемой группы веществ иногда применяют и более новое название – глициды.

Углеводы можно разделить на три группы : 1) Моносахариды – углеводы, способные гидролизоваться с образованием более простых углеводов. К данной группе относятся гексозы (глюкоза и фруктоза), а также пентоза (рибоза). 2) Олигосахариды – продукты конденсации нескольких моносахаридов (например, сахароза). 3) Полисахариды – полимерные соединения, содержащие большое число молекул моносахаридов.

Моносахариды . Моносахариды являются гетерофункциональными соединениями. В их молекулах одновременно содержатся и карбонильная (альдегидная или кетонная), и несколько гидроксильных групп, т.е. моносахариды представляют собой полигидроксикарбонильные соединения - полигидроксиальдегиды и полигидроксикетоны. В зависимости от этого моносахариды подразделяются на альдозы (в моносахариде содержится альдегидная группа) и кетозы (содержится кетогруппа). Например, глюкоза – это альдоза, а фруктоза – это кетоза.

Получение. В свободном виде в природе встречается преимущественно глюкоза. Она же является структурной единицей многих полисахаридов. Другие моносахариды в свободном состоянии встречаются редко и в основном известны как компоненты олиго- и полисахаридов. В природе глюкоза получается в результате реакции фотосинтеза: 6CO 2 + 6H 2 O ® C 6 H 12 O 6 (глюкоза) + 6O 2 Впервые глюкоза получена в 1811 году русским химиком Г.Э.Кирхгофом при гидролизе крахмала. Позже синтез моносахаридов из формальдегида в щелочной среде предложен А.М.Бутлеровым



Похожие статьи