Методы определения морозостойкости строительных материалов. Определение морозостойкости строительных материалов

Способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения и значительного снижения плотности. Разрушение происходит в связи с тем, что вода, находящаяся в порах, при замерзании увеличивается в объеме примерно на 9 %. Наибольшее расширение воды при переходе в лед наблюдается при температуре -4°С, дальнейшее понижение температуры не вызывает увеличения объема льда. При замерзании воды стенки пор испытывают значительное давление и могут разрушаться. При полном заполнении водой всех пор разрушение материала может произойти даже при однократном замораживании. При насыщении пористого материала водой заполняются в основном макрокапилляры, микрокапилляры заполняются водой частично и служат резервными порами, куда отжимается вода в процессе замораживания. Следовательно, морозостойкость строительных материалов определяется величиной и характером пористости и условиями их эксплуатации.

Она тем выше, чем меньше водопоглощение и больше прочность материала при растяжении. Плотные материалы морозостойки. Из пористых материалов морозостойкостью обладают только те материалы, у которых в основном имеются закрытые поры или вода. Занимает менее 90 % пор. Материал считается морозостойким, если после установления числа циклов замораживания и оттаивания в насыщенном водой состоянии прочность его снизилась не более чем на 15-25 %, а потери в массе в результате выкрашивания не превысили 5 %. Морозостойкость характеризуется числом циклов попеременного замораживания при -15, -17°С и оттаивания при температуре 20°С. Число циклов (марка), которые должен выдерживать материал, зависит от условий его будущей службы в сооружении и от климатических условий. По числу выдерживаемых циклов попеременного замораживания, и оттаивания (степени морозостойкости) материалы подразделяются на марки Мрз 10, 15, 25, 35, 50, 100, 150, 200 и более. В лабораторных условиях замораживание производят в холодильных камерах. Один-два цикла замораживания в холодильной камере дают эффект, близкий к 3-5-годичному действию атмосферы.

ТЕПЛОПРОВОДНОСТЬ

Свойство материала передавать теплоту через толщу от одной поверхности к другой. Теплопроводность характеризуется количеством теплоты (Дж), проходящей через материал толщиной 1 м площадью 1 м2 в течение 1 секунды при разностях температур на противоположных поверхностях материала в 1°С. Теплопроводность материала находится в прямой зависимости от его химического состава, пористости, влажности и температуры, при которой происходит передача тепла. Волокнистые материалы имеют разную теплопроводность в зависимости от направления теплоты по отношению к волокнам (у древесины, например, теплопроводность вдоль волокон в два раза больше, чем поперек волокон). Мелкопористые материалы и материалы с замкнутыми порами обладают большей теплопроводностью, чем крупнопористые материалы и материалы с сообщающимися порами. Это связано с тем, что в крупных и сообщающихся порах усиливается перенос теплоты конвекцией, что и повышает суммарную теплопроводность.

С увеличением влажности материала теплопроводность возрастает, поскольку вода имеет теплопроводность в 25 раз большую, чем воздух. Еще больше возрастает теплопроводность сырого материала с понижением его температуры, поскольку теплопроводность льда в несколько раз больше, чем теплопроводность воды. Теплопроводность материала имеет огромное значение при устройстве ограждающих конструкций зданий - стен, потолков, полов, крыш. Легкие и пористые материалы мало теплопроводны. Чем выше объемный вес материала, тем выше его теплопроводность. Например, коэффициент теплопроводности тяжелого бетона объемным весом 2400 кг/м3 равен 1,25 ккал/м-ч-град, а пенобетона объемным весом 300 кг/м3 всего 0,11 ккал/м-ч-град.

ТЕПЛОЕМКОСТЬ

Свойство материала аккумулировать теплоту при нагревании. При последующем охлаждении материалы с высокой теплоемкостью выделяют больше теплоты. Поэтому при использовании материалов с повышенной теплоемкостью для стен, полов, потолков и других частей помещения температура в комнатах может сохраняться устойчивой длительное время.

Коэффициент теплоемкости - количество теплоты, необходимой для нагревания 1 кг материала на ГС. Строительные материалы имеют коэффициент теплоемкости меньше, чем у воды, которая обладает наибольшей теплоемкостью (4,2 кДж/(кг°С)). С увлажнением материалов их теплоемкость возрастает, но вместе с тем возрастает и теплопроводность.

Теплоемкость материала имеет значение в тех случаях, когда необходимо учитывать аккумуляцию тепла, например при расчете теплоустойчивости стен и перекрытий отапливаемых зданий с целью сохранения температуры в помещении без резких колебаний при изменении теплового режима, при расчете подогрева материала для зимних работ, при расчете устройства печей. В некоторых случаях приходится рассчитывать размеры печи, используя объемную удельную теплоемкость - количество тепла, необходимое для нагревания 1 м3 материала на ГС.

ВОДОПОГЛОЩЕНИЕ

Свойство материала поглощать и удерживать воду при непосредственном с ней соприкосновении. Характеризуется количеством воды, поглощаемой сухим материалом, погруженным полностью в воду, и выражается в процентах от массы (водопоглощение по массе).

Количество поглощенной образцом воды, отнесенное к его объему, - водопоглощение по объему. Водопоглощение по объему отражает степень заполнения пор материала водой. Так как вода проникает не во все замкнутые поры и не удерживается в открытых пустотах, объемное водопоглощение всегда меньше истинной пористости. Объемное водопоглощение всегда меньше 100 %, а водопоглощение по массе может быть более 100 %.

Водопоглощение строительных материалов изменяется главным образом в зависимости от объема пор, их вида и размеров.

В результате насыщения водой свойства материалов значительно изменяются: увеличиваются плотность и водопроводность, у некоторых материалов (например, древесины, глины) увеличивается объем. Вследствие нарушения связей между частицами материала и проникающими частицами воды понижается прочность строительных материалов.

КОЭФФИЦИЕНТ РАЗМЯГЧЕНИЯ

Отношение предела прочности при сжатии материала, насыщенного водой, к пределу прочности при сжатии материала в сухом состоянии. Коэффициент размягчения характеризует водостойкость материала. Для легко размокаемых материалов, например глины, коэффициент размягчения равен 0. Для материалов, которые полностью сохраняют свою прочность при действии воды (металл, стекло и т.п.), коэффициент размягчения равен 1. Материалы с коэффициентом размягчения более 0,8 относятся к водостойким. В местах, подверженных систематическому увлажнению, применять строительные материалы с коэффициентом размягчения менее 0,8 не разрешается.

ВЛАГООТДАЧА

Свойство, характеризующее скорость высыхания материала при наличии условий в окружающей среде (понижение влажности, нагрев, движение воздуха). Влагоотдача характеризуется количеством воды, которое материал теряет за сутки при относительной влажности воздуха 60 % и температуре 20°С. В естественных условиях вследствие влагоотдачи, через некоторое время после окончания строительных работ, устанавливается равновесие между влажностью строительных конструкций и окружающей средой. Такое состояние равновесия называют воздушно-сухим или воздушно-влажным равновесием.

ВОДОПРОНИЦАЕМОСТЬ

Способность материала пропускать воду под давлением. Характеристикой водопроницаемости служит количество воды, прошедшее в течение 1 секунды через 1 м2 поверхности материала при давлении 1 МПа. Плотные материалы (сталь, стекло, большинство пластмасс) водонепроницаемы. Методика определения водопроницаемости зависит от разновидности строительного материала. Водопроницаемость находится в прямой зависимости от плотности и строения материала - чем больше в материале пор и чем они крупнее, тем больше водопроницаемость. При выборе кровельных и гидротехнических материалов чаще всего оценивается не водопроницаемость, а водонепроницаемость, характеризуемая периодом времени, по истечению которого появляются признаки просачивания воды под определенным давлением или предельной величиной давления воды, при котором вода не проходит через образец.

ВОЗДУХОСТОЙКОСТЬ

Способность материала длительно выдерживать многократное систематическое увлажнение и высыхание без значительных деформаций и потери механической прочности. Изменение влажности влечет у многих материалов изменение их объема - разбухают при увлажнении, дают усадку при высыхании, трещины и т.д. Разные материалы по-разному ведут себя по отношению к действию переменной влажности. Бетон, например, при переменной влажности склонен к разрушению, так как цементный камень при высыхании сжимается, а заполнитель практически не реагирует - в результате возникает растягивающее напряжение, цементный камень отрывается от заполнителя. Для повышения воздухостойкости строительных материалов применяют гидрофобные добавки.

ВЛАЖНОСТНЫЕ ДЕФОРМАЦИИ

Изменение размеров и объема материала при изменении его влажности. Уменьшение размеров и объема материала при высыхании называют усадкой или усушкой, увеличение - разбуханием.

Усадка возникает и увеличивается в результате уменьшения слоев воды, окружающих частицы материала, и действием внутренних капиллярных сил, стремящихся сблизить частицы материала. Набухание связано с тем, что полярные молекулы воды, проникая между частицами или волокнами, утолщают их гидратные оболочки. Материалы высокопористого и волокнистого строения, способные поглощать много воды, характеризуются большой усадкой (например, ячеистый бетон 1-3 мм/м; тяжелый бетон 0,3-0,7 мм/м; гранит 0,02-0,06 мм/м; кирпич керамический 0,03-0,1 мм/м.

Что такое морозостойкость и каковы методы её определения? Какие требования по морозостойкости предъявляют к керамическим, стеновым и облицовочным материалам

Морозостойкость - свойство насыщенного водой материала выдерживать попеременное замораживание и оттаивание. Морозостойкость материала количественно оценивается маркой по морозостойкости. За марку материала по морозостойкости принимают наибольшее число циклов попеременного замораживания и оттаивания, которое выдерживают образцы материала без снижения прочности на сжатие более 15%; после испытания образцы не должны иметь видимых повреждений - трещин, выкрашивания (потеря массы не более 5%). От морозостойкости зависит долговечность строительных материалов в конструкциях, подвергающихся действию атмосферных факторов и воды. Марка по морозостойкости устанавливается проектом с учетом вида конструкции, условий ее эксплуатации и климата. Климатические условия характеризуются среднемесячной температурой наиболее холодного месяца и числом циклов попеременного замораживания и оттаивания по данным многолетних метеорологических наблюдений.

Легкие бетоны, кирпич, керамические камни для наружных стен обычно имеют морозостойкость 15, 25, 35. однако бетон, применяемый в строительстве мостов и дорог, должен иметь марку 50, 100 и 200, а гидротехнический бетон - до 500. Воздействие на бетон попеременного замораживания и оттаивания подобно многократному воздействию повторной растягивающей нагрузки, вызывающей усталость материала. Испытание морозостойкости материала в лаборатории проводят на образцах установленной формы и размеров (бетонные кубы, кирпич и т.п.) перед испытанием образцы насыщают водой. После этого их замораживают в холодильной камере от -15 до -20С, чтобы вода замерзла в тонких порах. Извлеченные из холодильной камеры образцы оттаивают в воде с температурой 15-20С, которая обеспечивает водонасыщенное состояние образцов. Базовые - первый (для всех видов бетонов, кроме бетонов дорожных и аэродромных покрытий) и второй (для бетонов дорожных и аэродромных покрытий); ускоренные при многократном замораживании и оттаивании - второй и третий; ускоренные при однократном замораживании - четвертый (дилатометрический) и пятый (структурно-механический). Для оценки морозостойкости материала применяют физические методы контроля и прежде всего импульсный ультразвуковой метод. С его помощью можно проследить изменение прочности или модуля упругости бетона в процессе циклического замораживания и определить марку бетона по морозостойкости в циклах замораживания и оттаивания, число которых соответствует допустимому снижению прочности или модуля упругости.

Обстоятельные исследования по влиянию грануло-метрии пор на морозостойкость керамических материалов выявили следующие положения:

все поры в керамическом материале (с точки зрения морозостойкости) могут быть разделены на три категории: опасные, безопасные и резервные;

опасные поры заполняются водой при насыщении на холоду. В них она удерживается при извлечении материала из воды и замерзает при температуре от --15 до --20° С. Диаметр этих пор от 200 до 1 мк для глиняного кирпича пластического прессования, от 200 до 0,1 мк для глиняного кирпича полусухого прессования;

безопасные поры при насыщении на холоду водой не заполняются, либо заполнившая их вода не замерзает при указанных температурах. Это обычно мелкие поры. Заполняющая их вода становится по существу пристеночной адсорбированной влагой, имеющей свойства почти твердого тела и температуру замерзания существенно ниже (--20° С);

резервные поры при насыщении на холоду полностью заполняются водой, но из них при извлечении образца из насыщающего сосуда вода частично вытекает вследствие малых капиллярных сил. Это крупные поры диаметром более 200 мк.

Согласно этим исследованиям, керамический материал будет морозостойким, если в нем объем резервных пор достаточен для компенсации прироста объема замерзающей воды в опасных порах.

По морозостойкости насыщенный водой глиняный обыкновенный кирпич должен выдерживать без каких-либо внешних признаков разрушения (расслоение граней, выкрашивание ребер и углов, растрескивание) не менее 15 повторных циклов попеременного замораживания при температуре -75°С и ниже с последующим оттаиванием в воде при температуре 15±5°С.

Легковесный кирпич должен выдерживать без каких-либо временных признаков разрушения не менее 10 повторных циклов попеременного замораживания при температуре -15°С и ниже с последующим оттаиванием при температуре 15 ±5°С.

Лицевой кирпич должен выдерживать без каких-либо признаков видимых повреждений не менее 25 повторных циклов попеременного замораживания с последующим оттаиванием в воде.

Морозостойкостью называют свойство насыщенного водой материала выдерживать многократное поперемен­ное замораживание и оттаивание без признаков разру­шения и значительного снижения прочности.

По числу выдерживаемых циклов попеременного замораживания и оттаивания (степени морозостойкости) материалы подразделяют на марки Мрз 10, 15, 25, 35, 50, 100, 150, 200 и более.

Если образцы после замораживания не имеют следов разрушения, то степень морозостойкости устанавливают определением коэффициента морозостойкости по формуле:

Для морозостойких материалов величина К Мрз должна быть не менее 0,75. Плотные материалы, не имеющие пор, или материа­лы с незначительной открытой пористостью, водопоглощение которых не превышает 0,5%, обладают высокой морозостойкостью. Материал признают морозостойким, если после задан­ною числа циклов замораживания и оттаивания потеря и весе образцов в результате выкрашивания и расслаивания не превышает 5% и прочность снижается не более чем на 25%.

Задача 1. При испытании образцов-кубов бетона на морозостойкость прочность их после испытания составила R сж = 15 МПа, до испытания прочность на сжатие образцов в водонасыщенном состоянии 18 МПа. Установить, морозостоек ли бетон?

Решение. Из формулы (19):

, т.к К Мрз >0,75, то бетон – морозостоек.

_____________________________________________________________________

ОПРЕДЕЛЕНИЕ ТЕПЛОПРОВОДНОСТИ

Теплопроводностью называют свойство материала передавать через толщу тепло при наличии разности температур на поверхностях, ограничивающих материал. Показателем теплопроводности материала служит коэффициент теплопроводности λ , ккал/м ч град .

Если представить себе однородную плоскую стену из данного материала толщиной δ, м и площадью F, м 2 , температура внутренней поверхности которой t 1 , анаружной поверхности t 2 , причем t 1 >t 2 , то через стену будет проходить постоянный поток тепла.



Количество тепла Q , ккал ,проходящего через стену за z ч,прямо пропорционально разности температур на поверхностях стены, площади стены, времени и обратно пропорционально толщине стены:

Теплопроводность материалов учитывается при теп­лотехнических расчетах толщины стен и перекрытий отапливаемых зданий, а также при определении требуемой толщины тепловой изоляции горячих поверхностей и холодильников. Она связана с термическим сопротивлением слоя материала R (м 2 °С/Вт), которое определяется по формуле:

Т а б л и ц а 3

Теплопроводность некоторых строительных материалов

Задача 1. Наружная поверхность кирпичной стены толщиной а = 51 см имеет температуру t=-33°С, внутренняя t=+18°С. Какое количество тепла проходит через каждый 1м 2 поверхности стены за 1ч? Коэффициент теплопроводности кирпича λ=0,8 Вт/м °С.

Решение. Из формулы (20):

______________________________________________________________________

ОПРЕДЕЛЕНИЕ ТЕПЛОЕМКОСТИ

8 февраля 2011

Под морозостойкостью понимают способность насыщенного водой материала выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения, т. е. без образования трещин, выкрашивания, расслаивания и без значительной потери прочности и веса.

Вода, находящаяся в порах материала, превратившись в лед, увеличивается в объеме примерно на 10%. При этом в материале возникают большие внутренние напряжения, которые постепенно его разрушают. Поэтому необходимо наружные поверхности стен и крыш делать из морозостойких материалов.

Морозостойкими являются материалы плотные или с малым водопоглощением (до 0,5%).

Морозостойкость материалов зависит не только от водопоглощения, но и от коэффициента размягчения. Материалы с коэффициентом размягчения ниже 0,7 практически неморозостойки.

Для определения морозостойкости материал замораживают до температуры — 15 °С, а затем погружают в воду комнатной температуры для оттаивания. Число циклов попеременного замораживания и оттаивания материала при условии, что прочность его в результате этого понизится не более чем на 30%, и характеризует морозостойкость материала.

«Материаловедение для штукатуров,
плиточников, мозаичников»,
А.В.Александровский

В строительстве понятие вязкости употребляется только применительно к материалам, находящимся в жидком состоянии. Вязкость — это свойство жидкостей оказывать сопротивление при перемещении одной их части относительно другой. Вязкость любой жидкости зависит от ее температуры и давления. С понижением температуры она резко возрастает, так же как и при повышении давления до нескольких сотен атмосфер. Вязкость принято…

Теплопроводность — это способность материала передавать тепло от одной своей поверхности к другой. Величина теплопроводности учитывается при подборе материалов для ограждающих конструкций — наружных стен, верхнего перекрытия жилых зданий. В жилых помещениях с наружными стенами из теплопроводных материалов зимой будет холодно, а стены промерзнут, будут мокнуть и отделка (штукатурка, окраска) разрушится. Чтобы избежать этого, стены…

Теплоемкость — свойство материала поглощать определенное количество тепла при нагревании и выделять его при охлаждении. Теплоемкость характеризуется коэффициентом теплоемкости (обозначается латинской буквой с), который равен количеству тепла, необходимого для нагревания 1 кг материала на 1 °С. В таблице приведены значения коэффициентов теплоемкости для некоторых материалов. Коэффициент теплоемкости некоторых материалов Наименование материала Коэффициент теплоемкости в ккал…

Звукопроводность — это свойство материала пропускать звук. Для изоляции помещений от шумов важно, чтобы строительные конструкции имели низкую звукопроводность. Оштукатуривают стены, в частности, и для того, чтобы уменьшить их звукопроводность. Различают два рода шумов, передаваемых стенами и перекрытиями: ударные и воздушные. Ударные шумы хорошо поглощаются пористыми материалами, для погашения воздушных шумов (от радиоприемников, громкой речи)…

Прочность — это способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия внешних нагрузок или других факторов. Внешние воздействия, которым подвергаются строительные материалы, могут вызывать у них напряжения сжатия, растяжения, изгиба, сдвига. Чаще всего строительные материалы работают на сжатие или изгиб. Прочность строительных материалов при сжатии, растяжении и т. п. характеризуется пределом…

Способ определения морозостойкости строительных материалов относится к области испытаний строительных изделий, в частности кирпича, камней силикатных и керамических. Способ определения морозостойкости строительных материалов включает насыщение образцов в воде или растворе хлористого натрия, поверхностное цикличное замораживание и оттаивание образцов и визуальную оценку морозостойкости, при этом замораживание осуществляют в течение 5-10 мин, а оттаивание 3-5 мин 0,1-0,2 части испытуемой поверхности, смену режимов замерзания и оттаивания ведут со скоростью 30-40 град/мин, а образцы погружают в воду и раствор хлористого натрия на 90-95% от их объема. Изобретение обеспечивает сокращение длительности испытаний, снижение трудоемкости, повышение достоверности результатов испытаний.

Изобретение относится к области испытания строительных материалов, в частности к определению их морозостойкости. Известен способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, замораживание образцов в воздушной среде при температуре минус 20 o C в течение 2 - 4 ч и оттаивание образцов в водной среде или растворе хлористого натрия при температуре 20 o C в течение 1,5 - 2 ч, регистрацию числа циклов замораживания - оттаивания до достижения 25%-ной потери прочности образцов или 5%-ной потери массы или до появления внешних признаков разрушения, по которым судят о морозостойкости строительных материалов (1). Недостатком способа является значительная трудоемкость и продолжительность испытания и необходимость применения сложного и громоздкого оборудования. Известен способ ускоренного определения морозостойкости строительных материалов путем насыщения водой образцов с вмонтированным в него стальным стержнем, замораживания и оттаивания и фиксации резкого возрастания начального электрического потенциала стального стержня, по которому и судят о морозостойкости материала (2). Известен способ определения морозостойкости образцов строительного материала по соотношению структурной и прочностной характеристик, отличающийся тем, что за структурную характеристику принимают капиллярную и контракционную пористости, а за прочностную - работу разрушения образцов (3). Недостатками известных способов (2, 3) является косвенность методов определения морозостойкости и вследствие этого невысокая точность результатов. Кроме того недостатками способов (1, 2, 3) является то, что определения морозостойкости в условиях прямого объемного замораживания не соответствует фактическим эксплуатационным условиям строительного материала, подвергающегося попеременному воздействию отрицательных и положительных температур только с одной стороны. Поэтому результаты испытания строительного материала приводят к большому разбросу значений морозостойкости материала. Известен способ определения морозостойкости строительных материалов путем одностороннего замораживания в морозильной камере в специальном контейнере, обеспечивающем отвод тепла с одной стороны испытуемых образцов, оттаивания в ванне с водой, определения структурной и прочностной характеристики образцов с последующим расчетом морозостойкости по формуле (4). Известен способ определения морозостойкости строительных материалов, включающий насыщение образца водой, путем циклического ввода под давлением порций воды, рассчитанных по эмпирической формуле (5). Недостатками известных способов (4, 5) является недостаточно высокая достоверность результатов испытания из-за применения в них расчетных формул с использованием эмпирических коэффициентов. Наиболее близким к предлагаемому является способ определения морозостойкости, включающий одностороннее замораживание кладки из кирпича или камней при температуре воздуха - 15 - 20 o C в течение 8 ч, оттаивание замороженной стороны кладки дождеванием при температуре воды 15 - 20 o C в течение 8 ч, регистрацию числа циклов замораживания и оттаивания до появления на поверхности кладки видимых признаков разрушения (шелушение, расслоение, растрескивание, выкрашивание), либо по потере массы и прочности, по которым судят о морозостойкости образцов строительных материалов (6). Недостатками известного способа является его высокая трудоемкость, стоимость и большая продолжительность испытания, что не позволяет осуществлять оперативный контроль выпускаемой продукции, значительные энергетические затраты на создание условий замораживания. Технический результат предлагаемого изобретения - сокращение длительности испытания, снижение трудоемкости, повышение достоверности результатов испытаний. Технический результат достигается тем, что в известном техническом решении, включающем предварительное насыщение образцов в воде или растворе хлористого натрия, одностороннее цикличное замораживание и оттаивание образцов, и визуальную оценку морозостойкости, ведут направленное, точечное замораживание в течение 5 - 10 мин и оттаивание в течение 3 - 5 мин 10 - 20% открытой поверхности испытываемых образцов, причем смену режимов замораживания и оттаивания осуществляют со скоростью 30 - 40 o в минуту, а образцы погружают в воду или раствор хлористого натрия на 90 - 95% их объема. Способ осуществляли следующим образом. Образцы, предназначенные для испытания на морозостойкость, предварительно насыщали в воде или растворе хлористого натрия. Затем устанавливали три образца Т-образно в емкость лицевой поверхностью вверх. После этого заливали в емкость воду или раствор хлористого натрия до погружения образцов на 90 - 95% их объема. Потом направленным потоком холодного воздуха при температуре минус 15 - 20 o C обрабатывали стык трех образцов, т.е. 10 - 20% их поверхности в течение 5 - 10 мин. Затем со скоростью 30 - 40 o C в мин переходили на режим нагревания и обрабатывали тот же стык теплым потоком воздуха с температурой 15 - 20 o C в течение 3 - 5 мин и регистрировали число циклов замораживания и оттаивания до появления видимых признаков разрушения (расслоения, растрескивания, выкрашивания, шелушения), по которым судили о морозостойкости строительных материалов. Использование в предлагаемом техническом решении приема точечного, направленного замораживания в течение 5 - 10 мин и оттаивания в течение 3 - 5 мин 10 -20% открытой поверхности испытываемых образцов позволяет создать в короткое время условия протекания процессов близких к фактическим при эксплуатации. За счет резкого (30 - 40 o C в мин) изменения режимов замораживания и оттаивания создается напряженное состояние в порах материала, обусловливающие деструктивные процессы, а именно разрыхление структуры, интенсификации микротрещинообразования и соответственно увеличение проницаемости. Погружение образцов в воду или раствор хлористого натрия на 90 - 95% от объема образца обеспечивает условия постоянной миграции влаги к открытой лицевой поверхности испытываемого образца через капилляры и микротрещины. Все эти приемы позволяют проводить скоростное определение морозостойкости, близкое к фактическому. Незначительные энергетические затраты, низкая трудоемкость, доступность и достоверность результатов позволяют осуществлять текущий контроль выпускаемой продукции и своевременно выявлять нарушения технологического процесса. Источники информации 1. ГОСТ 10090.1-95, ГОСТ 10090.2-95 "Бетоны. Методы определения морозостойкости. 2. А.С. СССР N 482676 М. кл. C 01 N 33/38, 1975 г. 3. А.С. СССР N 435621 М. кл. C 01 N 25/02, 1975 г. 4. А.С. СССР N 828849 М. кл. C 01 N 33/38, 1982 г. 5. А.С. СССР N 1255921 М. кл. C 01 N 33/38, 1986 г. 6. ГОСТ 7025-91 Кирпич и камни керамические и силикатные. Методы определения и водопоглощения, плотности и контроля морозостойкости.

Формула изобретения

Способ определения морозостойкости строительных материалов, включающий насыщение образцов в воде или растворе хлористого натрия, цикличное замораживание и оттаивание открытой поверхности образцов и визуальную оценку морозостойкости, отличающийся тем, что замораживают и оттаивают 10 - 20% поверхности испытуемого образца в течение соответственно 5 - 10 мин и 3 - 5 мин, а смену режимов замораживания и оттаивания ведут со скоростью 30 - 40 град. /мин, при этом образцы погружают в воду или раствор хлористого натрия на 90 - 95% от их объема.



Похожие статьи