Атф и другие органические соединения клетки.

Тема: АТФ и другие органические соединения клетки /
Этапы урока Время Ход урока
Деятельность учителя Деятельность ученика
I.Оргмомент Оргмомент
II. Проверка д/з 15­20 мин. 1. ученик у доски сравнительная характеристика ДНК и РНК
2. ученик характеристика ДНК
3. ученик характеристика РНК
4. построение участка молекулы ДНК
5. принцип комплементарности. В чем он заключается. Изобразить на доске.
III.Изучение нового материала 20 мин. АТФ и прочие органические соединения клетки

1. Что такое энергия,Какие виды энергии вам известны?
2. Почему для жизнедеятельности любого организма необходима энергия?
3. Какие витамины вам известны? Какова их роль?
АТФ. Строение. Функции. Нуклеотиды являются структурной основой для целого ряда важных для
жизнедеятельности органических веществ. Наиболее широко распространенными среди них
являются макроэргические соединения (высокоэнергетические соединения, содержащие богатые
энергией, или макроэргические, связи), а среди последних - аденозинтрифосфатп (АТФ).
АТФ состоит из азотистого основания аденина, углевода рибозы и (в отличие от нуклеотидов ДНК и
РНК) трех остатков фосфорной кислоты (рис. 21).
АТФ - универсальный хранитель и переносчик энергии в клетке. Практически все идущие в клетке
биохимические реакции, которые требуют затрат энергии, в качестве ее источника используют АТФ.
При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ),
если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ
переходит в аденозинмонофосфат (АМФ). При отделении третьего и второго остатков фосфорной
кислоты освобождается большое количество энергии (до 40 кДж). Именно поэтому связь между
этими остатками фосфорной кислоты называют макроэргической (она обозначается символом ~).
Связь между рибозой и первым остатком фосфорной кислоты макроэргической не является, и при ее
расщеплении выделяется всего около 14 кДж энергии.
АТФ + H2O­ АДФ + H3PO4+ 40 кДж,
АДФ + H2O – АМФ + H3PO4 + 40кДж,
Макроэргические соединения могут образовываться и на основе других нуклеотидов. Например,
гуанозинтрифосфат (ГТФ) играет важную роль в ряде биохимических процессов, однако АТФ
является наиболее распространенным и универсальным источником энергии для большинства
биохимических реакций, протекающих в клетке. АТФ содержится в цитоплазме, митохондриях,
пластидах и ядрах.
Витамины. Биологически активные органические соединения - витамины (от лат, vita - жизнь)
совершенно необходимы в малых количествах для нормальной жизнедеятельности организмов. Они
играют важную роль в процессах обмена, часто являясь составной частью ферментов.
Витамины были открыты русским врачом Н. И. Луниным в 1880 г. Термин «витамины» предложен в
1912 г. польским ученым К. Функом. В настоящее время известно около 50 витаминов. Суточная
потребность в витаминах очень мала. Так, для человека меньше всего требуется витамина В12 -
0,003 мг/сут, а больше всего - витамина С - 75 мг/сут.
Витамины обозначают латинскими буквами, хотя у каждого из них есть и название. Например,
витамин С - аскорбиновая кислота, витамин А - ретинол и так далее. Одни витамины
растворяются в жирах, и их называют жирорастворимыми (A, D, Е, К), другие - растворимы в воде
(С, В, РР, Н) и соответственно называются водорастворимыми.
Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих
физиологических функций в организме.

>> АТФ и другие органические соединения клетки

АТФ и другие органические соединения клетки.

1. Какие органические вещества вы знаете?
2. Какие витамины вам извеетны? Какова их роль?
3. Какие виды энергии вам известны?
4. Почему для жизнедеятельности любого организма необходима энергия?

Аденозинтрифосфат (АТФ) - нуклеотид, состоящий из азотистого основания аденина, углевода рибозы и трех остатков фосфорной кислоты (рис. 12), содержится в цитоплазме, митохондриях, пластидах и ядрах.

АТФ - неустойчивая структура. При отделении одного остатка фосфорной кислоты АТФ переходит в аденозиндифосфат (АДФ), если отделяется еще один остаток фосфорной кислоты (что бывает крайне редко), то АДФ переходит в аденозинмонофосфат (АМФ). При отделении каждого остатка фосфорной кислоты освобождается 40 кДж энергии.

АТФ + Н2О → АДФ + Н3РО4 + 40 кДж,
АДФ + Н2О →АМФ + Н3РО4 + 40 кДж.

Связь между остатками фосфорной кислоты называют макроэргической (она обозначается символом -)так как при ее разрыве выделяется почти в четыре раза больше энергии, чем при расщеплении других химических связей (рис. 13).

АТФ - универсальный источник энергии для всех реакций, протекающих в клетке.

Витамины (от лат. vita - жизнь) - сложные биоорганические соединения, необходимые в малых количествах для нормальной жизнедеятельности организмов . В отличие от других органических веществ витамины не используются в качестве источника энергии или строительного материала. Некоторые витамины организмы могут синтезировать сами (например, бактерии способны синтезировать практически все витамины ), другие витамины поступают в организм с пищей.


Витамины принято обозначать буквами латинского алфавита. В основу современной классификации витаминов положена их способность растворяться в воде и жирах. Различают жирорастворимые (А, Д, Е и К) и водорастворимые (В, С, РР и др.) витамины.

Витамины играют большую роль в обмене веществ и других процессах жизнедеятельности организма. Как недостаток, так и избыток витаминов может привести к серьезным нарушениям многих физиологических функций в организме.

Кроме перечисленных выше органических соединений (углеводы, липиды , белки , нуклеиновые кислоты , витамины) в любой клетке всегда есть много других органических веществ. Они являются промежуточными или конечными продуктами биосинтеза и распада.

Аденозинтрифосфат (АТФ). Аденозиндифосфат (АДФ). Аденозинмонофосфат (АМФ). Макроэргическая связь.

Витамины жирорастворимые и водорастворимые.


1. Какое строение имеет молекула АТФ?
2. Какую функцию выполняет АТФ?
3. Какие связи называются макроэргическими?
4. Какую роль выполняют в организме витамины?


Каменский А. А., Криксунов Е. В., Пасечник В. В. Биология 9 класс
Отправлено читателями с интернет-сайта

Содержание урока конспект уроку и опорный каркас презентация урока акселеративные методы и интерактивные технологии закрытые упражнения (только для использования учителями) оценивание Практика задачи и упражнения,самопроверка практикумы, лабораторные, кейсы уровень сложности задач: обычный, высокий, олимпиадный домашнее задание Иллюстрации иллюстрации: видеоклипы, аудио, фотографии, графики, таблицы, комикси, мультимедиа рефераты фишки для любознательных шпаргалки юмор, притчи, приколы, присказки, кроссворды, цитаты Дополнения внешнее независимое тестирование (ВНТ) учебники основные и дополнительные тематические праздники, слоганы статьи национальные особенности словарь терминов прочие Только для учителей Работа добавлена на сайт сайт: 2016-06-09

">Лекция № 2

">Нуклеиновые кислоты, АТФ и другие органические соединения клетки

"> ">Типы нуклеиновых кислот ">. В клетках имеется два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, оторые соединены прочными химическими связями.

"> Каждый из нуклеотидов, входящих в состав РНК, содержит пятиуглеродный сахар – рибозу; одно из 4 азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар – дезоксирибозу; одно из 4 азотистых оснований: аденин, цитозин, гуанин, тимин (А, Г, Ц, Т); остаток фосфорной кислоты.

"> В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой – остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и фосфорной кислоты, а боковые группы этой цепи – 4 типа нерегулярно чередующихся азотистых оснований.

"> Молекула ДНК представляет собой структуру, состоящую из 2 нитей, которые по всей длине соединены друг с другом водородными связями.

"> Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

">А (аденин) – Т (тимин)

">Т (тимин) – А (аденин)

">Г (гуанин) – Ц (цитозин)

">Ц (цитозин) – Г (гуанин)

"> Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу, называют комплементарными нитями.

"> Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла важную роль в развитии молекулярной биологии и генетики. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в линейных молекулах белков, т.е. их первичную структуру. Набор белков определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их поколениям потомков, т.е. являются носителями наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток и в небольшом количестве в митохондриях и хлоропластах.

"> ">Основные виды РНК ">. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми белками РНК, которые называются информационными (иРНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов – рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

"> В синтезе белка принимает участие и другой вид РНК – транспортная (тРНК), которая подносит аминокислоты к месту образования белковых молекул – рибосомам.

"> Каждая молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы она содержит рибозу и вместо тимина – урацил.

">Итак, нуклеиновые кислоты выполняют в клетке важнейшие биологические функции. В ДНК хранится наследственная информация о всех свойствах клетки и организма в целом. Различные виды РНК принимают участие в реализации наследственной информации через синтез белка.

">АТФ ">.

"> В любой клетке, кроме белков, жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

"> Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров.К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды – мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

"> ">Аденозинфосфорные кислоты ">. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще 2 остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений, т.е. для всех процессов жизнедеятельности.

"> Витамины. К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, которые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных. Недостаток ряда витаминов в организме человека и животных ведет к нарушению работы ферментов и является причиной тяжелых заболеваний – авитаминозов.

Жиров, полисахаридов и нуклеиновых кислот, насчитывается несколько тысяч других органических соединений. Их можно условно разделить на конечные и промежуточные продукты биосинтеза и распада.

Конечными продуктами биосинтеза называют органические соединения, которые играют самостоятельную роль в организме или служат мономерами для синтеза биополимеров. К числу конечных продуктов биосинтеза относятся аминокислоты, из которых в клетках синтезируются белки; нуклеотиды — мономеры, из которых синтезируются нуклеиновые кислоты (РНК и ДНК); глюкоза, которая служит мономером для синтеза гликогена, крахмала, целлюлозы.

Путь к синтезу каждого из конечных продуктов лежит через ряд промежуточных соединений. Многие вещества подвергаются в клетках ферментативному расщеплению, распаду.

Рассмотрим некоторые конечные органические соединения.

Аденозинфосфорные кислоты. Особо важную роль в биоэнергетике клетки играет адениловый нуклеотид, к которому присоединены еще два остатка фосфорной кислоты. Такое вещество называют аденозинтрифосфорной кислотой (АТФ). В химических связях между остатками фосфорной кислоты молекулы АТФ запасена энергия (Е), которая освобождается при отщеплении фосфата:

АТФ - АДФ+Ф+Е

В этой реакции образуется аденозиндифосфорная кислота (АДФ) и фосфорная кислота (фосфат, Ф).

Энергию АТФ все клетки используют для процессов биосинтеза, движения, производства тепла, передачи нервных импульсов, свечений (например, у люминесцентных бактерий), т. е. для всех процессов жизнедеятельности.

АТФ — универсальный биологический аккумулятор энергии. Световая энергия Солнца и энергия, заключенная в потребляемой пище, запасаются в молекулах АТФ.

Регуляторные и сигнальные вещества. Конечными продуктами биосинтеза являются вещества, играющие важную роль в регуляции физиологических процессов и развитии организма. К числу их относятся многие гормоны животных. Наряду с белковыми гормонами, о которых сказано в § 4, известны гормоны небелковой природы. Некоторые из них регулируют содержание ионов натрия и воды в организме животных, другие обеспечивают половое созревание и играют важную роль в воспроизведении животных. Гормоны тревоги или стресса (например, адреналин) в условиях напряжения усиливают выход глюкозы в кровь, что в конечном счете приводит к увеличению синтеза АТФ и активному использованию энергии, запасенной организмом.

Насекомые производят ряд особых пахучих веществ, которые играют роль сигналов, сообщающих о нахождении пищи, об опасности, привлекающих самок к самцам (и наоборот).

У растений имеются свои гормоны. Под действием некоторых гормонов значительно ускоряется созревание растений, увеличивается их урожайность.

Растения производят сотни разнообразных летучих и нелетучих соединений, которые привлекают насекомых, переносящих пыльцу; отпугивают или отравляют насекомых, питающихся растениями; подавляют иногда развитие растений других видов, растущих рядом и конкурирующих за минеральные вещества в почве.

Витамины. К конечным продуктам биосинтеза принадлежат витамины. К ним относят жизненно важные соединения, которые организмы данного вида не способны синтезировать сами, а должны получать в готовом виде извне. Например, витамин С (аскорбиновая кислота) синтезируется в клетках большинства животных, а также в клетках растений и микроорганизмов. Клетки человека, человекообразных обезьян, морских свинок, некоторых видов летучих мышей утратили способность синтезировать аскорбиновую кислоту. Поэтому она является витамином только для человека и перечисленных животных. Витамин РР (никотиновую кислоту) животные не способны синтезировать, но его синтезируют все растения и многие бактерии.

Большинство известных витаминов в клетке становятся составными частями ферментов и участвуют в биохимических реакциях.

Суточная потребность человека в каждом витамине составляет несколько микрограммов. Только витамин С нужен в количестве около 100 мг в сутки.

Недостаток ряда витаминов в организме человека и животных ведет к нарушению работы ферментов и является причиной тяжелых заболеваний — авитаминозов. Например, недостаток витамина С является причиной тяжелого заболевания — цинги, при недостатке витамина D развивается рахит у детей.

Нуклеиновые кислоты - высокомолекулярные органические соединения, образованные остатками нуклеотидов.

Нуклеотид - фосфорные эфиры нуклеозидов, ноклиозидфосфаты.

Макроэргическая связь - это ковалентные связи, которые гидролизуются с выделением значительного кол-ва энергии.

Комплементарностью - взаимное соответствие молекул биополимеров или их фрагментов, обеспечивающее образование связей между пространственно взаимодополняющими (комплементарными) фрагментами молекул или их структурных фрагментов вследствие супрамолекулярных взаимодействий.

2) В молекуле ДНК присутствуют нуклеотиды четырех типов: дезоксиаденозин монофосфат (dAMP), дезоксигуанозинмонофосфат (dGMP), дезокситимидинмонофосфат(dТМР),дезоксицитадинмонофосфат(с!СМР).

3) 1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму;
2) регуляция всех процессов, происходящих в клетке.

4) 1. ДНК содержит сахар дезоксирибозу, РНК - рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой, гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
2. Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил - неметилированная форма тимина.
3. ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.

5) Рибонуклеи́новые кисло́ты (РНК) - нуклеиновые кислоты, полимеры нуклеотидов, в состав которых входят остаток ортофосфорной кислоты, рибоза (в отличие от ДНК, содержащей дезоксирибозу) и азотистые основания - аденин, цитозин, гуанин и урацил (в отличие от ДНК, содержащей вместо урацила тимин). Эти молекулы содержатся в клетках всех живых организмов, а также в некоторых вирусах.
Дезоксирибонуклеи́новая кислота́ (ДНК) - один из двух типов нуклеиновых кислот, обеспечивающих хранение, передачу из поколения в поколение и реализацию генетической программы развития и функционирования живых организмов. Основная роль ДНК в клетках - долговременное хранение информации о структуре РНК и белков.

6) АТФ - это главный универсальный поставщик энергии в клетках всех живых организмов. АТФ - Аденозинтрифосфа́т

7) АТФ относится к так называемым макроэргическим соединениям, то есть к химическим соединениям, содержащим связи, при гидролизе которых происходит освобождение значительного количества энергии. Гидролиз макроэргических связей молекулы АТФ, сопровождаемый отщеплением 1 или 2 остатков фосфорной кислоты, приводит к выделению, по различным данным, от 40 до 60 кДж/моль.

8) Витамины - это группы сравнительно низкомолекулярных органических соединений разнообразной химической природы. По растворимости они подразделяются на две большие группы: растворимые в жирах и растворимые в воде.



Похожие статьи