Сердечная мышца человека, ее особенности и функции. Основные физиологические свойства сердечной мышцы

Как всякая мышца, сердечная мышца обладает: возбудимостью, т. е. способностью отвечать возбуждением на раздражение, сократимостью. т. е. способностью сокращаться, и проводимостью, т. е. способностью проводить возбуждение. Кроме того, сердце обладает способностью к ритмической автоматии.

Возбудимость . Сердечная мышца способна возбуждаться электрическими, механическими, термическими и химическими раздражителями. При действии любого из этих раздражителей могут возникнуть возбуждение и сокращение сердечной мышцы. Для этого, однако, необходимо, чтобы сила раздражения была равна или превышала пороговую силу. Раздражения слабее пороговых не вызывают возбуждения и сокращения.

Возбуждение сердечной мышцы . О возбуждении мышечных клеток сердцем, как и любой другой возбудимой ткани, можно судить по изменению разности электрических потенциалов, существующей между возбужденным участком и невозбужденным или между протоплазмой клетки и ее внешней средой.

Рефрактерность сердечной мышцы . Во время возбуждения сердечная мышца утрачивает способность отвечать второй вспышкой возбуждения на искусственное раздражение или на приходящий к ней импульс от очага автоматии. Такое состояние невозбудимости называют абсолютной рефрактерностью.

Сокращение сердечной мышцы . Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

Механизм и скорость проведения возбуждения в сердце . Проведение возбуждения в миокарде осуществляется электрическим путем; потенциал действия, возникший в возбужденной мышечной клетке, служит раздражителем для соседних клеток.

Амплитуда потенциала действия в мышечных клетках сердца в 4-5 раз превышает пороговый уровень деполяризации мембраны, необходимый для того, чтобы возник в соседних клетках распространяющийся потенциал действии. Следовательно, потенциал действия по своей амплитуде сверхдостаточен для вызова возбуждения в соседних клетках. Ото является важным приспособлением, обеспечивающим надежность проведения возбуждения по проводящей системе и миокарду предсердий и желудочков.

Скорость проведения возбуждения в разных отделах сердца неодинакова. По миокарду предсердий у теплокровных животных возбуждение распространяется со скоростью 0,8-1 м/сек. В проводящей системе желудочков, состоящей из волокон Пуркине, скорость проведения возбуждения больше и достигает 2-4,2 м/сек. По миокарду желудочков возбуждение распространяется со скоростью 0,8-0,9 м/сек.

При переходе возбуждения от мышечных волокон предсердий к клеткам атриовентрикулярного узла происходит задержка проведения импульса. Недавние исследования Гоффмана и Кренфильда с применением микроэлектродной техники показали, что на коротком участке длиной 1 мм в верхней части атриовентрикулярного узла распространение возбуждения замедляется и оно проводится с очень малой скоростью — 0,02-0,05 м/сек.

Задержка проведения импульса в атриовентрикулярном узле обусловливает более позднее начало возбуждения желудочков по сравнению с предсердиями. Это имеет важное физиологическое значение для согласованной работы отделов сердца. Именно поэтому возбуждение желудочков начинается лишь но прошествии 0,12-0,18 секунды после того, как начинается возбуждение предсердий.

Миокард — сердечная мышца, представляет собой толстую часть сечения стенки сердца и содержит кардиомиоциты — сократительные клетки сердца. Миокард является уникальной мышцей в организме человека, больше такого типа мышц у человека нигде нет. От толщины миокарда зависит способность и сила сердца перекачивать кровь.

Свойства сердечной мышцы

Расположен миокард между наружным слоем эпикарда и внутренним слоем эндокарда.

Миокард является такой мышцей, которая в отличии от скелетных мышц приспособлена быть устойчивой к утомлению (усталости). Это достигается за счет того, что кардиомиоциты имеют большое количество митохондрий, что способствует поддержанию постоянного аэробного дыхания. Кроме того, миокард имеет большой запас крови по сравнению со своими размерами, обеспечивающей ее непрерывным потоком питательных веществ и кислородом, удаляя тем самым отходы метаболизма гораздо быстрее и эффективнее.

Основное назначение миокарда — это организация ритмических движений сердца, заключающееся в непрерывных автоматических сокращениях и расслаблениях мышечных волокн.

Строение миокарда

В некоторых характеристиках миокард имеет схожести с другими мышцами, но имеет множество своих особенностей. Кардиомиоциты гораздо короче своих родственников — миоцитов, имеют меньше ядер. Каждое мышечное волокно подсоединяется к плазменной мембране (сарколемме) с особыми трубочками (Т-канальцами). В этих Т-канальцах сарколемма шипована большим количеством кальциевых каналов, позволяющих протекать кальций-ионному обмену гораздо быстрее чем у нервно-мышечного соединения в скелетных мышцах. Сокращение мышечных клеток миокарда происходит за счет стимулирования потенциала действия потоком ионов кальция.

Как и другие мышцы, миокард состоит из саркомеров, которые являются основными сократительными единицами мышц. Саркомер имеет длину от 1.6 до 2.2 мкм. Саркомер содержит светлые и темные полоски. В центре проходит темная полоска, которая имеет постоянную длину, равную 1.5 мкм. Саркомеров состоят из длинных, скользящих друг с другом, когда мышцы сокращаются и расслабляются, волокнистых белков. Основные два белка, обнаруженные в саркомерах это миозин , образующий густые нити, а также актин , который образует тонкие нити. Анатомически миозин имеет длинный волнистый хвост и шаровидную головку, которая связывается с актином. Головка миозина кроме того, связывается с АТФ, являющейся источником энергии для клеточного метаболизма, необходима для кардиомиоцитов, чтобы поддерживать их функции в нормальном состоянии. Совместно миозин и актин формируют миофибриллярные нити, которые представляют собой удлиненные, сократительные нити, находящиеся в мышечной ткани. Как и скелетные мышцы, миокард содержит белок миоглобин, который хранит кислород.

Внутри сердца, миокард имеет разную толщину. Так сердечные камеры с более толстым слоем миокарда способны перекачивать кровь под более большим давлением и силой, по сравнению с камерами имеющими более тонкие слои миокарда. Самый тонкий слой миокарда расположен в предсердиях, так как данные камеры в первую очередь заполняются кровью через пассивный кровоток. В правом желудочке миокард гораздо толще, так как данная часть сердечной мышцы должна перекачивать большой объем крови, возвращающуюся в легкие для насыщения кислородом. Самый толстый слой миокарда расположен в левом желудочке, так как данная часть сердца должна качать кровь через аорту по всей системе кровообращения.

Толщина миокарда также может меняться у каждого человека, в связи с перенесенными заболеваниями, она может быть толще и жестче, либо тоньше и стать дряблой. Например гипертония приводит к гипертрофии сердечной мышцы, когда клетки миокарда увеличивают адаптивный ответ в связи с высоким кровяным давлением. Гипертрофия сердечной мышцы в конце концов может привести к остановке сердца когда миокард становится настолько жестким, что сердце больше не может качать кровь. Дряблая (слабая) сердечная мышца миокард становится такой после перенесенных инфекций и инфарктов. Сердечная мышца в данном случае становится настолько слабой, но не справляется с перекачиванием крови, развивается сердечная недостаточность.

Возбуждение сердечной мышцы вызывает ее сокращение, т. е. увеличение ее напряжения или укорочение длины мышечных волокон. Сокращение сердечной мышцы так же, как и волна возбуждения в ней, длится дольше, чем сокращение и возбуждение скелетной мышцы, вызванные одним отдельным стимулом, например замыканием или размыканием постоянного тока. Период сокращения отдельных мышечных волокон сердца примерно соответствует длительности потенциала действия. При частом ритме деятельности сердца укорачивается и продолжительность потенциала действия, и длительность сокращения.

Как правило, всякая волна возбуждения сопровождается сокращением. Однако возможен и разрыв связи между возбуждением и сокращением. Так, при длительном пропускании через изолированное сердце раствора Рингера, из которого исключена соль кальция, ритмические вспышки возбуждения, а следовательно, и потенциалы действия, сохраняются, а сокращения прекращаются.

Строение сердечной мышцы человека, ее свойства и какие процессы проходят в сердце

Эти и ряд других опытов показывают, что ионы кальция необходимы для сократительного процесса, но не являются необходимыми для возбуждения мышцы.

Разрыв связи между возбуждением и сокращением.можно наблюдать также в умирающем сердце: ритмические колебания электрических потенциалов еще происходят, тогда как сокращения сердца уже прекратились.

Непосредственным поставщиком энергии, затрачиваемой в первый момент сокращения сердечной мышцы, как и скелетной мышцы, являются макроэргические фосфорсодержащие соединения - аденозинтрифосфат и креатинфосфат. Ресинтез этих соединений происходят за счет энергии дыхательного и гликолитического фосфорилирования, т. е. за счет энергии, поставляемой углеводами. В сердечной мышце преобладают аэробные процессы, идущие с использованием кислорода, над анаэробными, которые значительно более интенсивно происходят в скелетной мускулатуре.

Соотношение между исходной длиной волокон сердечной мышцы и силой их сокращения . Если увеличить приток раствора Рингера к изолированному сердцу, т. е. увеличить наполнение и растяжение стенок желудочков, то сила сокращения сердечной мышцы увеличивается. То же самое можно наблюдать, если подвергнуть небольшому растяжению полоску сердечной мышцы, вырезанную из стенки сердца: при растяжении сила ее сокращения увеличивается.

На основании подобных фактов установлена зависимость силы сокращения волокон сердечной мышцы от их длины перед началом сокращения. Эта зависимость положена и основу сформулированного Старлингом «закона сердца». Согласно данному эмпирически установленному закону, верному лишь для определенных условий, сила сокращения сердца тем больше, чем больше растяжение мышечных волокон в диастолу.

Лекции 2-й семестр.

Лекция № 1 Физиология сердечно-сосудистой системы.

К системе кровообращения относятся сердце и сосуды – кровеносные и лимфатические. Основное значение системы кровообращения состоит в снабжении кровью органов и тканей. Сердце представляет собой биологический насос, благодаря работе которого кровь движется по замкнутой системе сосудов. В организме человека имеется 2 круга кровообращения.

Большой круг кровообращения начинается аортой, которая отходит от левого желудочка, и заканчивается сосудами, впадающими в правое предсердие. Аорта дает начало крупным, средним и мелким артериям. Артерии переходят в артериолы, которые заканчиваются капиллярами.

Капилляры широкой сетью пронизывают все органы и ткани организма. В капиллярах кровь отдает тканям кислород и питательные вещества, а из них в кровь поступают продукты обмена веществ, в том числе и углекислый газ.

Физиологические свойства сердечной мышцы.

Капилляры переходят в венулы, кровь из которых попадает в мелкие, средние и крупные вены. Кровь от верхней части туловища поступает в верхнюю полую вену, от нижней – в нижнюю полую вену. Обе эти вены впадают в правое предсердие, где заканчивается большой круг кровообращения

Малый круг кровообращения (легочный) начинается легочным стволом, который отходит от правого желудочка и несет в легкие венозную кровь. Легочный ствол разветвляется на две ветви, идущие к левому и правому легкому. В легких легочные артерии делятся на более мелкие артерии, артериолы и капилляры. В капиллярах кровь отдает углекислый газ и обогащается кислородом. Легочные капилляры переходят в венулы, которые затем образуют вены. По четырем легочным венам артериальная кровь поступает в левое предсердие.

Сердце – полый мышечный орган. Сплошной вертикальной перегородкой сердце делится на левую и правую половины. Горизонтальная перегородка вместе с вертикальной делит сердце на четыре камеры. Верхние камеры – предсердия, нижние – желудочки.

Стенка сердца состоит из трех слоев. Внутренний слой представлен эндотелиальной оболочкой (эндокард , выстилает внутреннюю поверхность сердца). Средний слой (миокард ) состоит из поперечнополосатой мышцы. Наружная поверхность сердца покрыта серозной оболочкой (эпикард ), являющейся внутренним листком околосердечной сумки – перикарда. Перикард (сердечная сорочка) окружает сердце, как мешок, и обеспечивает его свободное движение.

Клапаны сердца. Левое предсердие от левого желудочка отделяет двустворчатый клапан . На границе между правым предсердием и правым желудочком находится трехстворчатый клапан . Клапан аорты отделяет ее от левого желудочка, а клапан легочного ствола отделяет его от правого желудочка.

При сокращении предсердий (систола ) кровь из них поступает в желудочки. При сокращении желудочков кровь с силой выбрасывается в аорту и легочный ствол. Расслабление (диастола ) предсердий и желудочков способствует наполнению полостей сердца кровью.

Значение клапанного аппарата. Во время диастолы предсердий предсердно-желудочковые клапаны открыты, кровь, поступающая из соответствующих сосудов, заполняет не только их полости, но и желудочки. Во время систолы предсердий желудочки полностью заполняются кровью. При этом исключается возврат крови в полые и легочные вены. Это связано с тем, что в первую очередь сокращается мускулатура предсердий, образующая устья вен. По мере наполнения полостей желудочков кровью створки предсердно-желудочковых клапанов плотно смыкаются и отделяют полость предсердий от желудочков.

В результате сокращения сосочковых мышц желудочков в момент их систолы сухожильные нити створок предсердно-желудочковых клапанов натягиваются и не дают им вывернуться в сторону предсердий.

К концу систолы желудочков давление в них становится больше давления в аорте и легочном стволе. Это способствует открытию полулунных клапанов аорты и легочного ствола , и кровь из желудочков поступает в соответствующие сосуды.

Таким образом, открытие и закрытие клапанов сердца связано с изменением величины давления в полостях сердца. Значение же клапанного аппарата состоит в том, что он обеспечивает движение крови в полостях сердца в одном направлении.

Основные физиологические свойства сердечной мышцы.

Возбудимость. Сердечная мышца менее возбудима, чем скелетная. Реакция сердечной мышцы не зависит от силы наносимых раздражений. Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

Проводимость. Возбуждение по волокнам сердечной мышцы распространяется с меньшей скоростью, чем по волокнам скелетной мышцы. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по проводящей системе сердца – 2,0-4,2 м/с.

Сократимость. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая движение крови из полостей желудочков в аорту и легочный ствол.

К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм

Рефрактерный период. Сердце имеет значительно выраженный и удлиненный рефрактерный период. Он характеризуется резким снижением возбудимости ткани в период ее активности. Благодаря выраженному рефрактерному периоду, который длится дольше, чем период систолы (0,1-0,3с), сердечная мышца не способна к тетаническому (длительному) сокращению и совершает свою работу по типу одиночного мышечного сокращения.

Автоматизм. Вне организма при определенных условиях сердце способно сокращаться и расслабляться, сохраняя правильный ритм.

Следовательно, причина сокращений изолированного сердца лежит в нем самом. Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизма.

Автоматия - способность сердечной мышцы к ритмическому сокращению без всяких внешних воздействий под влиянием импульсов, возникающих в самом сердце. Благодаря автоматии автономное (извлеченное из организма) сердце способно некоторое время самостоятельно сокращаться. Импульсы в сердечной мышце возникают благодаря деятельности атипических мышечных волокон, заложенных в некоторых участках миокарда - внутри них спонтанно генерируются электрические импульсы определенной частоты, распространяющиеся затем по всему миокарду. Первый такой участок находится в области устьев полых вен и называется синусовым , или синоатриальным, узлом. Он производит импульсы с частотой 60-80 раз в минуту и является главным центром автоматии сердца. Второй участок находится в толще перегородки между предсердиями и желудочками и называется предсердно-желудочковым, или атриовентрикулярным , узлом. Третий участок - пучок Гиса - атипические волокна, лежащие в межжелудочковой перегородке. От пучка Гиса отходят тонкие волокна атипической ткани - волокна Пуркинье, разветвляющиеся в миокарде желудочков. Все участки атипической ткани способны самостоятельно генерировать импульсы; в синусовом узле их частота самая высокая, его называют водителем ритма первого порядка, другие центры автоматии подчиняются этому ритму. Совокупность всех центров автоматии составляют проводящую систему сердца, благодаря которой волна возбуждения, возникшая в синусном узле, последовательно распространяется по всему миокарду и обеспечивает последовательное сокращение отделов сердца.

Возбудимость сердечной мышцы проявляется в способности сердца приходить в состояние возбуждения под действием различных раздражителей (химических, механических, электрических и др.). Потенциал действия, возникающий в одной клетке, передается другим клеткам, что приводит к распространению возбуждения по всему сердцу.

Сократимость - способность полости сердца сокращаться, обусловленная свойством клеток миокарда отвечать на возбуждение сокращением. Это свойство сердечной мышцы позволяет сердцу выполнять механическую работу по перекачиванию крови по сосудам: при сокращении полости сердца давление крови в сердечных камерах возрастает, и кровь под давлением поступает в артерии. Работа сердечной мышцы подчиняется закону «все или ничего»: если на сердечную мышцу оказывать раздражающее действие различной силы, мышца каждый раз отвечает максимальным сокращением. Если сила раздражителя не достигает порогового значения, то сердечная мышца не отвечает сокращением.

В работе сердца как насоса выделяют три фазы, сокращение предсердий, сокращение желудочков и пауза, когда желудочки и предсердия одновременно расслаблены. Сокращение сердца называется систолой , расслабление - диастолой. Во время систолы предсердий кровь выталкивается в желудочки, так как обратный кровоток в вены невозможен из-за захлопывания клапанов, во время систолы желудочков кровь устремляется в большой и малый круги кровообращения (обратному току в предсердия препятствуют митральный и трехстворчатый клапаны, расположенные между предсердиями и желудочками), а за время диастолы камеры сердца находятся в расслабленном состоянии и вновь заполняются кровью. За одну минуту сердце взрослого здорового человека сокращается примерно 60-70 раз. Ритмичное чередование сокращения и расслабления каждого из отделов сердца обеспечивает неутомляемость сердечной мышцы.

Иннервация сердца очень сложна. Она осуществляется вегетативной нервной системой - блуждающим и симпатическими нервами, в составе которых имеются как чувствительные, так и двигательные волокна. В стенке самого сердца находятся нервные сплетения, состоящие из нервных узлов и нервных волокон. Двигательные нервы сердца осуществляют четыре основные функции: замедление, ускорение, ослабление и усиление деятельности сердца. Эти нервы относятся к вегетативной нервной системе. Таким образом, сердечная мышца, обладая способностью к самостоятельным сокращениям, подчиняется также «командам сверху» - регулирующему воздействию нервной системы, обеспечивающему оптимальную адаптацию сердечной деятельности потребностям организма в конкретной ситуации.

Сосудистая система. Кровеносные сосуды представляют собой систему полых эластичных трубок различного строения, диаметра и механических свойств, по которым протекает кровь. Сосуды подразделяются на артерии, вены и капилляры.

Артерии имеют толстые упругие стенки, состоящие из грех слоев. Наружный слой представляет собой соединительнотканную оболочку, средний слой состоит из гладкой мышечной ткани и содержит соединительнотканные эластические волокна, внутренний слой образован эндотелием, под которым расположена внутренняя эластическая мембрана. Эластические элементы артериальной стенки образуют единый каркас, работающий как пружина и обусловливающий эластичность артерий.

Разветвляясь, артерии переходят в артериолы , которые отличаются от артерий наличием только одного слоя мышечных клеток и могут регулировать скорость кровотока за счет сужения или расширения просвета. Артериола переходит в прекапилляр, в котором мышечные клетки разрознены и не составляют сплошного слоя. От него отходят многочисленные капилляры - самые мелкие кровеносные сосуды, которые соединяют артериолы с венулами (мелкими разветвлениями вен). Благодаря очень тонкой стенке капилляров в них происходит обмен различными веществами между кровью и клетками тканей. В зависимости от потребности в кислороде и других питательных веществах разные ткани имеют разное количество капилляров. Капилляры могут находиться в активном (открытом) и пассивном (закрытом) состоянии. При активизации обменных процессов или потребности в усиленной теплоотдаче объем крови, проходящей через орган, может увеличиваться за счет активизации дополнительного числа капилляров. В покое и при уменьшении теплоотдачи значительное количество капилляров переходит в пассивное состояние, уменьшая таким образом объем кровотока. Состояние капиллярной сети регулируется вегетативной нервной системой в зависимости от потребностей организма.

Сливаясь, капилляры переходят в посткапилляры , которые но строению аналогичны прекапилляру. Посткапилляры сливаются в венулы с просветом 40-50 мкм. Венулы объединяются в более крупные сосуды, несущие кровь к сердцу, - вены. Они, так же как и артерии, имеют стенки, состоящие из трех слоев, по содержат меньше эластических и мышечных волокон, поэтому менее упруги, их просвет поддерживается током крови. Вены имеют клапаны (полулунные складки внутренней оболочки), которые открываются по току крови, что способствует движению крови в одном направлении. Схематически строение кровеносных сосудов представлено на рис. 4.6.

Рис. 4.6.

Человек и все позвоночные животные имеют замкнутую кровеносную систему. Кровеносные сосуды сердечно-сосудистой системы образуют две основные подсистемы: большой и малый круги кровообращения (рис. 4.7).

Сосуды большого круга кровообращения соединяют сердце со всеми другими частями тела. Большой круг кровообращения начинается в левом желудочке, откуда выходит аорта, а заканчивается в правом предсердии, куда впадают полые вены. Как часть большого круга кровообращения выделяют третий (сердечный) круг, снабжающий кровью само сердце. Он состоит из двух венечных, или коронарных, артерий, отходящих от аорты, и впадает в правое предсердие через венечную пазуху.

Сосуды малого круга кровообращения переносят кровь от сердца к легким и обратно. Малый круг кровообращения начинается правым желудочком, из которого выходит легочный ствол, а заканчивается левым предсердием, в которое впадают легочные вены.

Рис. 4.7.

1 - сердце; 2 - малый (легочный) круг кровообращения; 3 - большой круг кровообращения

Кардиомиоциты изолированы друг от друга и контактируют в области вставочных дисков, где соприкасаются мембраны соседних кардиомиоциов.

Коннесксоны- в мембране соседних клеток образуются эти структуры за счет белков конексинов. Коннексон окружают 6 таких белков, внутри коннексона - канал, который позволяет проходит ионам, таким таким образом электрический ток распространяется от одной клетки к другой. “f область имеет сопротивление 1,4 ом на см2(низкое). Возбуждение охватывает кардиомиоциты одновременно. Они функционирую как функциональный сенсициы. Нексусы очень чувствительны к недостатку кислорода, к действию катехоламинов, к стрессовым ситуациям, к физической нагрузке. Это может вызывать нарушение проведения возбуждения в миокарде. В экспериментальных условиях нарушение плотных контактов моно получить при помещении кусочков миокарда в гипертонический раствор сахарозы. Для ритмической деятельности сердца важна проводящая система сердца - эта система состоит из комплекса мышечных клеток, образующих пучки и узлы и клетки проводящей системы отличаются от клеток рабочего миокарда - они бедны миофибриллами, богаты саркоплазмой и содержат высокое содержание гликогена. Эти особенности при световой микроскопии делают их более светлыми с малой поперечной исчерченностью и они были названы атипическими клетками.

В состав проводящей системы входят:

1. Синоатриальный узел(Кейт-Флека)(в парвом предсердии у места впадения верхней полой вены)

2. Атрии-вентрикулярный узел(Ашоф-Тавара)(лежит в правом предсердии на границе предсердие-желудочек - задняя стенка правого предсердия)

Эти два узла связаны внутрипредсердными трактами -

3. Предсердные тракты

Пердний с ветвью Бахмена к левому предсердию

Средний тракт(Венкебаха)

Задний тракт(Тореля)

4. Пучок Гиса(отходит от атриовентрикулярного узла. Проходит через фиброзную ткань и обеспечивает связь миокарда предсердия с миокардом желудочка. Проходит в межжелудочковую перегородку, где разделяется на правую и илевую ножку пучка Гиса)

5. Правая и левая ножки пучка Гиса(они идут вдоль межжелудочковой перегородки. Левая ножка имеет две ветви - переднюю и заднюю. Конечными разветвлениями будут являтся волокна Пуркинье)

6. Волокна Пуркинье

В проводящей системе сердца, которая образована видоизмененными типами мышечных клеток имеются три вида клеток - пейсмекерны(P), переходные, клетки Пуркинье.

1. P -клетки . Находятся в сино-артриальном узле, меньше в атриовентрикулярном ядре. Это самые мелкие клетки, в них мало т - фибрилл и митохондрий, т-сстема отстутствует, l. система развита слабо. Основной функцией этих клеток является генерация потенциала действия за счет врожденного свойства медленной диастолической деполяризации. В них происходит периодическое снижение мембранного потенциала, которое приводит их к самовозбуждению.

2. Переходные клетки осуществляют предачу возбуждения в области атривентрикуярного ядра. Они обнаруживаются между P клетками и клетками Пуркинье. Эти клетки вытянутой формы, у них отсутствует сарко-плазматический ретикулум. Эти клетки облают замедленной скоростью проведения.

3. Клетки Пуркинье широкие и короткие, в них больше миофибрилл, лучше развит саркоплазматический ретикулум, T система отсутствует.

Электрические свойства клеток миокарда. Клетки миокарда, как рабочего, так и проводящей системы обладают мембранным потенциалам покоя и снаружи мембрана кардиомиоцита заряжена «+», а внутри «-». Это обусловлено ионной ассиметрией - внутри клеток в 30 раз больше ионов калия, а снаружи в 20-25 раз больше ионов натрия. Это обеспечивается постоянной работой натриево-калиевым насосом. Измерение мембранного потенциала показывает, что клетки рабочего миокарда имеетпотенциал - 80-90 мВольт. В клетках проводящей системы - 50-70 мВольт. При возбуждении клеток рабочего миокарда возникает потенциал действия(5 фаз) - 0, 1, 2, 3, 4.

0. При возбуждении возникает процесс деполяризации кардиомиоцитов, что связано с открытием натриевых каналов и повышение проницаемости для ионов натрия, которые устремляются внутрь кардиомиоцитов. При снижении мембранного потенциала о 30-40 милиВольт происходить открытие медленных натриево-кальцевых каналов. Через них могут входить натрий и дополнительно кальций. Это обеспечивает процесс деполяризации и овершут(реверсия) 120 мВольт.

1. Начальная фаза реполяризации . Закрытие натриевых каналов и некоторое повышение проницаемости к ионам хлора.

2. Фаза Плато . Процесс деполяризации затормаживается. Связана с усилением выхода кальция внутрь. Он задерживает восстановление заряда на мембране. При возбуждении снижается калиевая проницаемость(в 5 раз). Калий не может выходить из кардиомиоцитов.

3. Когда кальцевые каналы закрываются происходит фаза быстрой реполяризации . За счет восстановления поляризации к ионам калия и мембранный потенциал возвращается к исходному уровню и наступает диастолический потенциал

4. Диастолический потенциал постоянно стабилен

В клетках проводящей системы есть отличительные особенности потенциала.

1. Сниженный мембранный потенциал в диастолический период(50-70мВ)

2. Четвертая фаза не является стабильной и отмечается постепенное снижение мембранного потенциала к пороговому критическому уровню деполяризации и в диастолу постепенно медленно продолжает снижаться достигая критического уровня деполяризации при котором произойдет самовозбуждение П-клеток. В P-клетках происходит усиление проникновения ионов натрия и снижение выхода ионов калия. Повышается проницаемость ионов кальция. Эти сдвиги в ионном составе приводят к тому, что мембранный потенциал в P-клетках снижается до порогового уровня и p-клетка самовозбуждается обеспечивая возникновение потенциала действия. Плохо выражена фаза Плато. Фаза ноль плавно переходи ТВ процесс реполяризации, который восстанавливает диастолический мембранный потенциал, а дальше цикл повторяется вновь и P-клетки переходят в состояние возбуждения. Наибольшой возбудимостью обладают клетки сино-атриального узла. Потенциал в нем особо низок и скорость диастолической деполяризации наиболее высок.. Это будет влиять на частоту возбуждения. P- клетки синусного узла генерируют частоту до 100 ударов в мин. Нервная система(симпатическая система) подавляют действие узла(70 ударов). Симпатическая система может повышать автоматию. Гуморальные факторы- адреналин, норадреналин. Физические факторы - механический фактор - растяжение, стимулируют автоматию, согревание, тоже увеличивает автоматию. Все это применяется в медицине. На этом основано мероприятие прямого и непрямого массажа сердца. Область атриовентрикулярного узла тоже обладает автоматией. Степень автоматии атриовентрикулярного узла выражена значительно меньше и как правило она в 2 раза меньше, чем в синусном узле - 35-40. В проводящей системе желудочков импульсы тоже могут возникать(20-30 в минуту). ПО ходу проводящей системы возникает постипенное снижение уровня автоматии, что получило название градиента автоматии. Синусный узел - центр автоматии первого порядка.

Станеус - ученый . Наложение лигатур на сердце лягушки(3х камерное). У правого предсердия имеется венозныц синус, где лежит аналог синусного узла человека. Станеус накладывал 1ую лигатуру между венозным синусом и предсердием. Когда лигатура затягивалась сердце прекращала свою работу. Вторая лигатура накладывалась Станеусом между предсердиями и желудочком. В этой зоне находится аналог атрии-вентрикулярного узла, но 2ая лигатура имеет задачу не отделения узла, а его механическое возбуждение. Ее накладывают постепенно, возбуждая атриовентрикулярный узел и при этом возникает сокраение сердца. Желудочки получают вновь сокращаться под действием атрии-вентрикулярного узла. С частотой в 2 раза меньше. Если наложить 3ю лигатуру , которая отделяет атривентрикулярный узел возникает остановка сердца. Все это дает нам возможность показать, что синусный узел - водитель ритма, атриовентрикулярный узел обладает меньшей автоматией. В проводящей системе существуе убывающий градиент автоматии.

Физиологические свойства сердечной мышцы.

Возбудимость, проводимость,сократимость

Под возбудимостью сердечной мышцы понимается ее свойство отвечать на действие раздражителей пороговой или над пороговой силы процессом возбуждения. Возбуждение миокарда можно получить на действие химических, механических, температурных раздражений. Эта способность отвечать на действие разных раздражителей используется при массаже сердца(механическое), введение адреналина, кардиостимуляторы. Особенностью реакции сердца на действие раздражителя, играет то что действует по принципу «Все или ничего». Сердце отвечает максимальным импульсом уже на пороговый раздражитель. Продолжительность сокращения миокарда в желудочкх составляет 0,3с. Это обусловлено длительным потенциалом действия, который тоже длится до 300мс. Возбудимость сердечной мышцы может падать до 0 - абсолютно рефрактерная фаза. Никакие раздражители не могут вызвать повторного возбуждения(0,25-0,27с). Сердечная мышца абсолютно невозбудима. В момент расслабления(диастолы)абсолютная рефрактерная переходит в относительную рефрактерную 0,03-0,05с. В этот момент можно получить повторное раздражение на над пороговые раздражители. Рефрактерный период сердечной мышцы длится и совпадает по времени столько, сколько длится сокращение. Вслед за относительной рефрактерностью имеется небольшой период повышенной возбудимости - возбудимость ставновится выше исходного уровня - супер нормальная возбудимость. В эту фазу сердце особо чувствительно к воздействию других раздражителей(смогут возникать др. раздражители или экстрасистолы- внеочередные систолы). Наличие длительного рефрактерного периода должно оградить сердце от повторных возбуждений. Сердце выполняет насосную функцию. Промежуток между нормальным и внеочередным сокращением укорачивается. Пауза может быть нормальной или удлиненной.Удлиненную паузу называют компенсаторной. Причина экстрасистолов - возникновение других очагов возбуждения - атриовентрикулярный узел, элементы желудочковой части проводящей системы, клетки рабочего миокарда, Это может быть связано с нарушением кровоснабжением, нарушением проведения в сердечной мышцей, но все дополнительные очаги - эктопические очаги возбуждения. В зависимости от локализации - разные экстрасистолы - синусные, предсредные, атриовентрикулярные. Экстрасистолы желудочка сопровождаются удлиненной компенсаторнйо фазой. 3 дополнительное раздражение - причина внеочередного сокращения. Вовремя экстрасистола сердце утрачивает возбудимость. К ним приходит очередной импульс из синусного узла. Пауза нужна для восстановления нормального ритма. Когда в сердце происходит сбой сердце пропускает одно нормальное сокращение и дальше возвращается к нормальному ритму.

Проводимость - способность проводить возбуждение. Скорость проведения возбуждения в разных отделах неодинакова. В миокарде предсердий - 1 м/c и время проведения возбуждения занимает 0,035 с

Скорость проведения возбуждения

Миокард 1 м/c 0,035

A-V узел 0,02 - 0-05 м в с. 0,04 с

Проведение система желудочков - 2-4,2 м в с. 0,32

В сумме от синусного узла до миокарда желудочка - 0,107 с

Миокард желудочка - 0,8-0,9 м в с

Нарушение проведения сердца приводит к развитию блокад - синусной, атривентрикулярной, пучка гиса и его ножек. Синусный узел может выключится.. Включится ли атривентрикулярный узел как водитель ритма? Синусные блокады встречаются редко. Больше в атриовентрикулярных узлах. Удлиение задержки(больше 0,21с) возбуждение доходит до желудочка, хоть и замедленно. Выпадение отдельных возбуждений, которые возникают в синусном узле НАПРИМЕР из 3 доходит только 2 - вторая степень блокады. 3я блокада - предсердия и желудочки работают несогласованно. Блокада ножек и пучка - блокада желудочков. Чаще встречаются блокады ножек пучка Гиса и соответственно желудочек запаздывает за другим.

Сократимость

Кардиомиоциты включают фибриллы, саркомеры. Есть продольные трубочки и Т трубочки наружной мембраны, котоыре входят внутрь на уровне мембраны я. Они широкие. Сократительная фугкция кардиомиоцитов связана с белками миозином и актином. На тонких актиновых белках - система тропонин и тропомиозин. Это не дает головкам миозин сцепляется с головками миозина. Снятие блокировки - ионами кальция. По т трубочкам открываются кальцевые каналы. Повышение кальция в саркоплазме снимает тормозной эффект актина и миозина. Мостики миозина перемещают тонике нити к центру. Миокард подчиняется в сократительной функции 2м законам - все или ничего. Сила сокращения зависит от исходной длины кардиомиоцитов - Франк и Старалинг. Если миоциты предварительно растянуты, то они отвечают большей силой сокращения. Растяжение зависит от наполнения кровью. Чем больше- тем сильней. Этот закон формулируют как - систола есть функция диастолы. Это важный приспособительный механизм. Это синхронизирует работу правого и левого желудочка.

Сердечная мышца, как и скелетные мышцы, обладает свойством возбудимости, способностью проводить возбуждение и сократимостью. К физиологическим особенностям сердечной мышцы относятся удлиненный рефрактерный период и автоматизм.

1. Возбудимость сердечной мышцы. Сердечная мышца менее возбудима, чем скелетная. Для возникновения возбуждения в сердечной мышце необходим более сильный раздражитель, чем для скелетной. Установлено, что реакция сердечной мышцы не зависит от силы наносимых раздражений (электрических, механических и т.д.). Сердечная мышца максимально сокращается и на пороговое и на более сильное по величине раздражение.

2. Проводимость. Волны возбуждения проводятся по волокнам сердечной мышцы и так называемой специальной ткани сердца с неодинаковой скоростью. Возбуждение по волокнам мышц предсердий распространяется со скоростью 0,8-1,0 м/с, по волокнам мышц желудочков – 0,8-0,9 м/с, по специальной ткани сердца – 2,0-4,2 м/с. Возбуждение же по волокнам скелетной мышцы распространяется с гораздо большей скоростью, которая составляет 4,7 –5 м/с.

3. Сократимость сердечной мышцы имеет свои особенности. Первыми сокращаются мышцы предсердий, затем – сосочковые мышцы и субэндокардиальный слой мышц желудочков. В дальнейшем сокращение охватывает и внутренний слой желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол. Сердце для осуществления механической работы (сокращения) получает энергию, которая освобождается при распаде макроэргических фосфорсодержащих соединений (креатинфосфат, аденозинтрифосфат).

4. Рефрактерный период – это период невосприимчивости мышцы сердца к действию других раздражителей. В отличие от других возбудимых тканей сердце имеет значительно выраженный и удлиненный рефрактерный период. Благодаря выраженному рефрактерному периоду, длящемуся дольше, чем период систолы, сердечная мышца не способна к длительному сокращению и совершает работу по типу одиночного мышечного сокращения

5. Автоматизм – способность сердечной мышцы приходить в состояние возбуждения и ритмического сокращения без внешних воздействий. Обеспечивается проводящей системой, состоящей из синусно-предсердного, предсердно-желудочкового узлов и предсердно-желудочкового пучка. Миокард функцией автоматизма не обладает.

Большой и малый круг кровообращения

Деление на большой и малый круги кровообращения условно: они сообщены между собой, один является продолжением другого, т.е. два круга включены последовательно, это замкнутая система.

Две части сердечно-сосудистой системы названы так потому, что каждая из них начинается в сердце и возвращается в сердце, но по отдельности замкнутых кругов они не образуют. Фактически имеется один общий замкнутый круг кровообращения. Из левого желудочка кровь поступает в аорту, далее по артериям она следует в капилляры всех органов и тканей организма, по венам возвращается в правое предсердие, правый желудочек и по легочной артерии поступает в легкие. Из легких по легочным венам артериальная кровь течет в левое предсердие и далее – в левый желудочек. Циркуляция крови по сосудам возможна только при наличии их тонуса, поскольку суммарный объем расслабленных сосудов больше объема крови. Кровь циркулирует по кругу в результате циклической деятельности сердца, главной функцией которого является нагнетание крови в артериальную систему организма.


Гемодинамика

Несмотря на ритмические сокращения сердца и поступление крови в сосуды порциями, в сосудах она течет непрерывно. Это обеспечивается эластичностью стенок артерий, которые во время систолы растягиваются, а во время диастолы спадаются и обеспечивают непрерывный ток крови. Давление, под которым кровь находится в сосудах, называется кровяным и постепенно меняется в зависимости от фазы сердечного цикла. Во время систолы желудочков кровь с силой выбрасывается в аорту, давление при этом максимально - это систолическое, или максимальное, давление. Во время диастолы давление понижается - диастолическое , или минимальное. Разность между систолическим и диастолическим давлением называется пульсовым давлением. В норме пульсовое давление равно 40 (35-55) мм рт. ст. Среднединамическое давление – это сумма минимального и одной трети пульсового давления. Выражает энергию непрерывного движения крови и представляет собой постоянную величину для данного сосуда и организма.

На величину артериального давления влияют различные факторы: возраст, положение тела, время суток, место измерения (правая или левая рука), состояние организма, физические и эмоциональные нагрузки и т.д.

Самое высокое давление в аорте (130 мм рт. ст.), в крупных артериях оно понижается на 10 % и в плечевой артерии составляет 110-125 мм рт. ст. (систолическое) на 60-85 мм рт. ст. (диастолическое). В капиллярах снижается до 15-25 мм рт. ст. Из капилляров кровь поступает в венулы (12-15 мм рт. ст.), затем в вены (3-5 мм рт. ст.). В полых венах давление составляет всего 1-3 мм рт. ст., а в самом предсердии равно нулю.

Скорость кровотока в различных участках кровяного русла неодинакова Скорость кровотока в различных участках кровяного русла неодинакова. Она зависит от суммарного просвета кровеносных сосудов данного вида. Чем меньше просвет, тем больше скорость тока крови, и наоборот. Самой узкой частью в кровеносной системе является аорта, в ней скорость самая высокая -0,5-1 м/с. Суммарный просвет всех капилляров в 1000 раз больше просвета аорты, соответственно, и скорость тока крови в 1000 раз меньше, чем в аорте (0,5-1 мм/с). Физиологический смысл медленного течения крови в капиллярах - газообмен, переход питательных веществ из крови и продуктов обмена веществ из тканей. Удетей скорость кровотока выше за счет частых сердечных сокращений. У новорожденного полный кругооборот совершается за 12 с, в возрасте 3 года -за 15 с, в 14 лет -за 18 с, у взрос-лых - за 22 с. С возрастом кругооборот крови замедляется, что связано со снижением эластичности сосудов и увеличением их длины.

У детей давление значительно ниже, чем у взрослых. Это связано с тем, что у детей больше развита капиллярная сеть и шире просвет кровеносных сосудов. В период полового созревания рост сердца опережает рост кровеносных сосудов. Это выражается в так называемой юношеской гипертензии, которая с возрастом проходит. У здорового человека давление поддерживается на постоянном уровне, но повышается при мышечной деятельности, эмоциональных состояниях.

Может выполнять свои многочисленные функции, только находясь в постоянном движении. Обеспечение движения крови является главной функцией сердца и сосудов, формирующих кровеносную систему. Сердечно-сосудистая система совместно с кровью участвует также в транспорте веществ, терморегуляции, реализации иммунных реакций и гуморальной регуляции функций организма. Движущая сила кровотока создастся за счет , которое выполняет функцию насоса.

Способность сердца сокращаться в течение всей жизни без остановки обусловлена рядом специфических физических и физиологических свойств сердечной мышцы. Сердечная мышца уникальным образом сочетает в себе качества скелетной и гладкой мускулатуры. Так же как и скелетные мышцы, миокард способен интенсивно работать и быстро сокращаться. Так же как и гладкие мышцы, он практически неутомим и не зависит от волевого усилия человека.

Физические свойства

Растяжимость — способность увеличивать длину без нарушения структуры под влиянием растягивающей силы. Такой силой является кровь, наполняющая полости сердца во время диастолы. От степени растяжения мышечных волокон сердца в диастолу зависит сила их сокращения в систолу.

Эластичность - способность восстанавливать исходное положение после прекращения действия деформирующей силы. Эластичность сердечной мышцы является полной, т.е. она полностью восстанавливает исходные показатели.

Способность развивать силу в процессе сокращения мышцы.

Физиологические свойства

Сокращения сердца происходят вследствие периодически возникающих процессов возбуждения в сердечной мышце, которая обладает рядом физиологических свойств: , .

Способность сердца ритмически сокращаться под влиянием импульсов, возникающих в нем самом, носит название автоматизм.

В сердце различают сократительную мускулатуру, представленную поперечно-полосатой мышцей, и атипическую, или специальную ткань, в которой возникает и проводится возбуждение. Атипическая мышечная ткань содержит малое количество миофибрилл, много саркоплазмы и не способна к сокращению. Она представлена скоплениями в определенных участках миокарда, которые образуют , состоящую из синоатриального узла, располагающегося на задней стенке правого предсердия у места впадения полых вен; атриовентрикулярного, или предсердно-желудочкового узла, находящегося в правом предсердии вблизи перегородки между предсердиями и желудочками; предсердно-желудочкового пучка (пучка Гиса), отходящего от атриовентрикулярного узла одним стволом. Пучок Гиса, пройдя через перегородку между предсердиями и желудочками, разветвляется на две ножки, идущие к правому и левому желудочкам. Заканчивается пучок Гиса в толще мышц волокнами Пуркинье.

Синоатриальныи узел является водителем ритма первого порядка. В нем возникают импульсы, которые определяют частоту сокращений сердца . Он генерирует импульсы со средней частотой 70-80 импульсов в 1 мин.

Атриовентрикулярный узел - водитель ритма второго порядка.

Пучок Гиса - водитель ритма третьего порядка.

Волокна Пуркинье — водители ритма четвертого порядка. Частота возбуждения, возникающая в клетках волокон Пуркинье, очень низкая.

В норме атриовентрикулярный узел и пучок Гиса являются только передатчиками возбуждений из ведущего узла к сердечной мышце.

Однако и они обладают автоматизмом, только в меньшей степени, и этот автоматизм проявляется лишь при патологии.

В области синоатриального узла обнаружено значительное число нервных клеток, нервных волокон и их окончаний, которые образуют здесь нервную сеть. К узлам атипической ткани подходят нервные волокна от блуждающих и симпатических нервов.

Первыми сокращаются мышцы предсердий, затем слой мышц желудочков, обеспечивая тем самым движение крови из полостей желудочков в аорту и легочный ствол.



Похожие статьи