Сравнительная таблица ассимиляции и диссимиляции. Ассимиляция и диссимиляция

Тема: Ассимиляция и диссимиляция. Метаболизм. Цель урока: Познакомить учащихся с понятием «обмен веществ в организме», ассимиляция, диссимиляция, метаболизм. Задачи урока: Образовательные: конкретизировать знания об обмене веществ (метаболизме) как свойстве живых организмов, познакомить с двумя сторонами обмена, выявить общие закономерности метаболизма; установить связь пластического и энергетического обмена на разных уровнях организации живого и их связь с окружающей средой. Развивающие:формировать умение выделять сущность процесса в изучаемом материале; обобщать и сравнивать, делать выводы; работать с текстом, схемами, другими источниками; реализация творческого потенциала учащихся, развитие самостоятельности. Воспитательные: используя приобретенные знания, понимать перспективы практического использования фотосинтез; понимать влияние обмена веществ на сохранение и укрепление здоровья. Оборудование: компьютер, проектор, презентация. Тип урока: изучение нового материала. Формы работы учащихся: самостоятельная работа с учебником, индивидуальная работа у доски, фронтальная работа.

Скачать:


Предварительный просмотр:

ПЛАН-КОНСПЕКТ УРОКА

Тема: Ассимиляция и диссимиляция. Метаболизм.

Цель урока:

Познакомить учащихся с понятием «обмен веществ в организме», ассимиляция, диссимиляция, метаболизм.

Задачи урока:

Образовательные: конкретизировать знания об обмене веществ (метаболизме) как свойстве живых организмов, познакомить с двумя сторонами обмена, выявить общие закономерности метаболизма; установить связь пластического и энергетического обмена на разных уровнях организации живого и их связь с окружающей средой.

Развивающие:формировать умение выделять сущность процесса в изучаемом материале; обобщать и сравнивать, делать выводы; работать с текстом, схемами, другими источниками;

реализация творческого потенциала учащихся, развитие самостоятельности.

Воспитательные: используя приобретенные знания, понимать перспективы практического использования фотосинтез; понимать влияние обмена веществ на сохранение и укрепление здоровья.

Оборудование: компьютер, проектор, презентация.

Тип урока: изучение нового материала.

Формы работы учащихся: самостоятельная работа с учебником, индивидуальная работа у доски, фронтальная работа.

Ход урока

  1. Организационный момент.

II. Повторение материала

  1. Проверка правильности заполнения таблицы «Сравнение строения клеток эукариот и прокариот». (Ответ учащегося у доски.)
  2. Фронтальная беседа по вопросам:
  1. Какую роль выполняет спора у прокариот? Чем она отличается от спор эукариот?
  2. Сравнивая строение и процессы жизнедеятельности эукариот и прокариот, выделите признаки, позволяющие предположить, какие клетки исторически более древние, а какие - более молодые.
  3. Что такое ферменты? Какова их роль в организме?
  4. Что такое обмен веществ? Приведите примеры обмена веществ в организме.

III. Изучение нового материала .

Задание: сравните два определения, найдите, есть ли в них отличие или они сходны. Чем вы это можете объяснить?

Обмен веществ складывается из двух взаимосвязанных процессов – анаболизма и катаболизма.

1. В ходе ассимиляции происходит биосинтез сложных молекул из простых молекул-предшественников или из молекул веществ, поступивших из внешней среды.

2. Важнейшими процессами ассимиляции являются синтез белков и нуклеиновых кислот (свойственный всем организмам) и синтез углеводов (только у растений, некоторых бактерий и цианобактерий).

3. В процессе ассимиляции при образовании сложных молекул идет накопление энергии, главным образом в виде химических связей.

1. При разрыве химических связей в молекулах органических соединений энергия высвобождается и запасается в виде АТФ.

2. Синтез АТФ у эукариот происходит в митохондриях и хлоропластах, а у прокариот – в цитоплазме, на мембранных структурах.

3. Диссимиляция обеспечивает все биохимические процессы в клетке энергией.

Всем живым клеткам постоянно нужна энергия, необходимая для протекания в них различных биологических и химических реакций. Одни организмы для этих реакций используют энергию солнечного света (при фотосинтезе), другие – энергию химических связей органических веществ, поступающих с пищей. Извлечение энергии из пищевых веществ осуществляется в клетке путем их расщепления и окисления кислородом, поступающим в процессе дыхания. Поэтому этот процесс называют биологическим окислением , или клеточным дыханием .

Биологическое окисление с участием кислорода называют аэробным , без кислорода – анаэробным . Процесс биологического окисления идет многоступенчато. При этом в клетке происходит накопление энергии в виде молекул АТФ и других органических соединений.

IV. Закрепление изученного материала.

  1. Что такое ассимиляция? Приведите примеры реакций синтеза в клетке.
  2. Что такое диссимиляция? Приведите примеры реакций распада в клетке.
  3. Докажите, что ассимиляция и диссимиляция - две стороны единого процесса обмена веществ и энергии - метаболизма.

Задание. Установите соответствие между процессами, протекающими в клетках организмов, и их принадлежностью к ассимиляции или диссимиляции:

Процессы, протекающие в клетках

Обмен веществ

1. Испарение воды

Обмен веществ — это совокупность химических превращений, обеспечивающих рост, жизнедеятельность, воспроизведение в живых организмах.

Ассимиляция (пластический обмен или анаболизм) -это эндотермический процесс синтеза высокомолекулярных органических веществ, сопровождающийся поглощением энергии. Происходит в цитоплазме.

Диссимиляция (энергетический обмен или катаболизм) — выделяется энергия. Распад веществ в клетке до простых, неспецифичных соединений. Начинается в цитоплазме, а заканчивается в митохондриях.

Виды обмена веществ:

— Белковый

— Углеводный

— Водный

— Солевой

Пластический обмен — это эндотермический процесс синтеза высокомолекулярных органических веществ, сопровождающийся поглощением энергии. Происходит в цитоплазме.

1)Подготовительный — из простых веществ и множества промежуточных соединений синтезируются необходимые для организма АМК, ВЖК, моносахара, азотные основания.

2)Безкислородный — происходит сборка сложных высокомолекулярных соединений(белки,жиры и т.д.). Эти реакции проходят на ЭПС, КГ, и в рибосомах.

Биосинтез белка — сложный процесс создания белка в клетках из аминокислот.

Транскрипция-процесс биосинтеза всех ви­дов РНК на ДНК, который протекает в ядре.

Определенный участок молекулы ДНК деспирализуется, водородные связи разрушаются. На одной цепи ДНК по принципу комплементарности из нуклеотидов синтезируется РНК-копия. В зависимости от уча­стка ДНК синтезируются рибосомные, транспортные, информационные РНК.

После синтеза, иРНК выходит из ядра и направляется в цитоплазму к месту синтеза бел­ка на рибосомы.

Трансляция-процесс синтеза полипептид­ных цепей, осуществляемый на рибосомах, где иРНК является посредником в передаче инфор­мации о первичной структуре белка. Каждая аминокислота соединяется с соответст­вующей тРНК за счет энергии АТФ. Образуется комплекс тРНК — аминокислота, который по­ступает на рибосомы.ИРНК в цитоплазме соединяется рибосомами.ТРНК с аминокислотами по принципу комплементарности соединяются с иРНК и входят в рибосому. В рибосо­ме между двумя аминокислотами образуется пептидная связь, а освободившаяся тРНК покидает рибосому. При этом иРНК каждый раз про­двигается на один триплет. Весь процесс обеспечи­вается энергией АТФ. Происходит синтез молекул белка.

Энергетический обмен — выделяется энергия. Распад веществ в клетке до простых, неспецифичных соединений. Начинается в цитоплазме, а заканчивается в митохондриях.

1) Подготовительный — крупные молекулы распадаются на мономеры. Белки до АМК. Углеводы до моносахаров. Жиры до ВЖК. У одноклеточных животных идёт в вакуолях и лизосомах. У многоклеточных животных этот этап проходит в ЖКК с выделением 10% энергии в виде тепла.

2) Безкислородный — происходит гликолиз и молочнокислое брожение. При этом глюкоза в цитоплазме клеток расщепляется до молочной кислоты. При этом высвобождающаяся энергия идет на синтез 2 молекул АТФ. У некоторых микроорганизмов, а иногда и в клетках глюкоза расщепляется до этанола. АМК, ВЖК, глицерин на этом этапе расщепляются до молочной кислоты, а иногда с образованием спирта.

3) Кислородный — универсальный этап, он абсолютно одинаков для распада мономеров с образованием воды и углекислого газа. При расщеплении двух молекул молочной кислоты выделяется энергия, необходимая на синтез 36 молекул АТФ. Происходит в митохондриях. Там есть ферменты и атмосферный кислород. Процесс окисления органических веществ в присутствии кислорода называется тканевым дыханием, или биологическим окислением. Энергия выделяется на этом этапе дискретно. Основная часть энергии идёт на синтез АТФ, а частично рассеивается в виде тепла.

Обмен веществ представляет собой единство двух процессов: ассимиляции и диссимиляции.

Ассимиляцией называют сумму процессов созидания живой материи: усвоение клетками веществ, поступающих в организм из внешней среды, образование более сложных химических соединений из более простых, происходящий в организме синтез живой протоплазмы. Термин «ассимиляция» происходит от латинского слова assimulo - делаю подобным и в буквальном переводе означает «уподобление», т. е. такое использование клетками различных веществ, при котором эти последние превращаются в живую материю.

Диссимиляция (от слова dissimulo - делаю неподобным) - это разрушение живой материи, распад, расщепление веществ, входящих в состав клеточных структур, в частности белковых соединений. При этом образуются удаляемые из организма продукты распада.

Часто трудно решить, являются ли определенные биохимические процессы ассимиляторными или диссимиляторными. Таковы, например, происходящие в организме процессы переноса определенных химических групп (остатка фосфорной кислоты, аминной группы) от одного химического соединения к другому - процессы трансфосфорилирования, трансаминирования и др.

Ассимиляция и диссимиляция взаимно противоположны и неразрывно связаны. Ассимиляция сопровождается усилением диссимиляторных процессов, которые в свою очередь подготовляют почву для ассимиляторных. Примером взаимосвязи ассимиляции и диссимиляции могут служить многочисленные опыты, показавшие, что при росте организма и размножении клеток, когда происходит усиленное образование живой протоплазмы и синтез белка, значительно усиливаются реакции распада. Поэтому при росте организма резко повышены затраты энергии. Варбург обнаружил, что окислительные процессы после оплодотворения яйца морского ежа, когда начинается размножение клеток, усиливаются в 6 раз. Равным образом, резко усиливаются диссимиляторные процессы в целом организме при быстром росте злокачественной опухоли, когда происходит интенсивное новообразование клеток.

Процессы ассимиляции и диссимиляции неотделимо связаны, но не всегда являются, однако, взаимно уравновешенными. Так, в период роста организма наблюдается значительная интенсивность обоих процессов при относительном преобладании ассимиляции.

Процесс превращения внешних веществ в энергию и совокупность реакций, в результате которых образуются сложные органические вещества, необходимые для жизнедеятельности организма, называется метаболизмом или обменом веществ. Основные процессы метаболизма – ассимиляция и диссимиляция, тесно взаимосвязанные между собой.

Обмен веществ происходит на клеточном уровне, но начинается с процесса пищеварения и дыхания. В обмене веществ участвуют органические соединения и кислород.

Питательные вещества поступают с пищей в желудочно-кишечный тракт, и уже в ротовой полости начинают расщепляться. В результате пищеварения молекулы веществ попадают через кишечные ворсинкxи в кровь и разносятся каждой клетке. Кислород поступает в лёгкие при дыхании и также разносится кровяным потоком.

Ассимиляция и диссимиляция в метаболизме – два взаимосвязанных процесса, идущих параллельно:

  • ассимиляция или анаболизм – совокупность процессов синтеза органических веществ с затратой энергии;
  • диссимиляция или катаболизм – процесс распада или окисления, в результате которого образуются более простые органические вещества и энергия.

Диссимиляция называется энергетическим обменом, т.к. главная цель процесса – получение энергии. Ассимиляция называется пластическим обменом, т.к. высвободившаяся в результате диссимиляции энергия идёт на постройку организма.

Клеточный обмен

Происходящие в клетке процессы ассимиляции и диссимиляции веществ играют важную роль для всего организма. Получение энергии из поступающих веществ происходит в митохондриях или цитоплазме. В ходе диссимиляции образуются молекулы АТФ (аденозинтрифосфат). Это универсальный источник энергии, который участвует в дальнейших процессах обмена веществ. Ход катаболизма на примере расщепления крахмала описан в таблице.

Диссимиляция

Где происходит

Результат

Подготовительный

Пищеварительный тракт

Расщепление поступивших в организм белков, жиров, углеводов до более простых соединений:

– белки – до аминокислот;

– жиры – до жирных кислот и глицерина;

– сложные углеводы (крахмал) – до глюкозы

Гликолиз

В цитоплазме

Бескислородное расщепление глюкозы до пировиноградной кислоты с образованием энергии. Большая часть (60 %) энергии рассеивается в виде тепла, оставшаяся часть (40 %) используется для образования двух молекул АТФ. В дальнейшем без доступа кислорода пировиноградная кислота превращается в молочную кислоту

Внутриклеточное дыхание

В митохондриях

Расщепление молочной кислоты с участием кислорода. Образуется углекислый газ – конечный продукт распада

В состав АТФ входят:

  • аденин – азотистое основание;
  • рибоза – моносахарид;
  • три остатка фосфорной кислоты.

Рис. 1. Формула АТФ.

АТФ является макроэргическим соединением и при гидролизе (взаимодействии с водой) высвобождает значительное количество энергии, которая идёт на восстановление и развитие организма, поддержание температуры тела, а также участвует в химических реакциях в процессе ассимиляции. Из более простых веществ в ходе анаболизма синтезируются сложные вещества, характерные для данного организма.

Примеры ассимиляции:

  • рост клеток;
  • обновление тканей;
  • формирование мышц;
  • заживление ран.

Рис. 2. Процесс метаболизма.

Процессы обмена веществ регулируются гормонами. Например, адреналин сдвигает обмен веществ в сторону диссимиляции, а инсулин – в сторону ассимиляции.

Автотрофы и гетеротрофы

Все живые организмы в зависимости от способа питания делятся на автотрофов и гетеротрофов. К автотрофам относятся растения и некоторые бактерии, которые синтезируют органические вещества из неорганических. Такие организмы самостоятельно создают все необходимые для жизнедеятельности вещества.

В растениях процесс ассимиляции называется фотосинтезом. В качестве источника энергии для синтеза органических веществ используется солнечный свет, а не АТФ.

Рис. 3. Сравнение автотрофов и гетеротрофов.

Что мы узнали?

Из урока 9 класса биологии узнали о главных процессах, составляющих метаболизм, – ассимиляции (анаболизме) и диссимиляции (катаболизме). В результате катаболизма образуются простые органические вещества, из которых в процессе ассимиляции синтезируются сложные вещества, необходимые организму.

Все клетки и живые организмы - это открытые системы, т. е. они пребывают в состоянии постоянного обмена энергий и веществ с окружающей средой. Имеются открытые системы и в неживой природе, но их существование качественно отличается от живых организмов. Рассмотрим такой пример: горящий кусок самородной серы находится в состоянии обмена с окружающей средой. При его горении поглощается О2, а выделяются SO2 и энергия (в виде тепла). Однако при этом кусок серы как физическое тело разрушается, утрачивает свою первичную структуру.

Для живых же организмов обмен с окружающей средой оказывается условием сохранения, поддержания их структурной организации путем самообновления всех веществ и компонентов, из которых они состоят.

Обмен веществ (метаболизм) - совокупность протекающих в живых организмах процессов (потребления, превращения, накопления и выделения веществ и энергии), обеспечивающих их жизнедеятельность, развитие, рост, воспроизведение. В процессе обмена веществ происходит расщепление и синтез молекул, входящих в состав клеток; обновление клеточных структур и межклеточного вещества.

В основе метаболизма лежат взаимосвязанные процессы ассимиляции (анаболизм) и диссимиляции (катаболизм). При ассимиляции (пластический обмен) происходит синтез сложных веществ из простых. Именно благодаря этому создаются все органические вещества в клетке, необходимые для построения ее структурных компонентов, ферментных систем и т. д. Ассимиляция всегда осуществляется с затратой энергии.

В ходе диссимиляции (энергетический обмен) сложные органические вещества расщепляются до более простых или до неорганических. При этом выделяется энергия, которая расходуется клеткой на выполнение различных процессов, обеспечивающих ее жизнедеятельность (синтез и транспорт веществ, механическую работу и т. д.).

Все живые организмы могут быть разделены на две группы: автотрофы и гетеротрофы, которые отличаются источниками энергии и необходимых веществ для обеспечения своей жизнедеятельности.

Автотрофы - организмы, синтезирующие из неорганических веществ органические соединения с использованием энергии солнечного света (как фототрофы - растения, цианобактерии) или энергии, получаемой при окислении минеральных (неорганических) веществ (таких, как хемотрофы -серобактерии, железобактерии и др.). Следовательно, они способны самостоятельно создавать требуемые для своей жизнедеятельности вещества.

Под действием биологических катализаторов (ферментов) из соединений (компонентов пищи), поступающих в организм, образуются новые вещества, из которых строятся его клетки. Так осуществляется процесс ассимиляции (анаболизма) - усвоения необходимых для организма веществ и превращения их в соединения, аналогичные компонентам этого организма и необходимые для его жизнедеятельности.

Одновременно с процессом ассимиляции в организме происходит и процесс диссимиляции (катаболизма), при котором образованные и накопленные при ассимиляции сложные органические соединения также ферментативно разлагаются до более простых соединений или конечных продуктов с постепенным высвобождением энергии, чаще всего в виде АТФ, которая используется для разнообразных процессов жизнедеятельности, в том числе для синтеза новых соединений.

Ассимиляция и диссимиляция, хотя и противоположные по результатам процессы, в основе своей тесно взаимосвязаны и взаимообусловлены. Взаимосвязь их обнаруживается в расходовании на биосинтез веществ (ассимиляцию) той энергии, которая освобождается в процессе диссимиляции. Без этой энергии не могут образовываться и продукты распада белков, жиров и углеводов, необходимые для биосинтеза. С другой стороны, ассимиляция обусловливает накопление в организме соответствующего энергетического материала. Эти процессы являются важнейшими звеньями метаболизма - совокупности процессов биохимических превращений веществ и энергии в живых организмах, обмена веществ.

Ассимиляцию называют также обменом пластических, питательных веществ, а диссимиляцию - энергетическим обменом. Для ассимиляции у зеленых растений используется энергия поглощенных световых лучей, у микроорганизмов-хемосинтетиков - энергия, выделяемая при окислении ими разных неорганических веществ.

АТФ - универсальный источник энергии в клетке. В организме человека, животных, большинства, микроорганизмов необходимая энергия образуется в реакциях катаболизма при дыхании или брожении. Эта энергия, прежде чем превратиться в какую-нибудь другую форму (механическую, осмотическую), переходит в особую форму химической энергии - энергию макроэргических связей молекул аденозинтрифосфорной кислоты. У большинства организмов энергия, выделяемая во время одной ферментативной реакции, является звеном «каталитического конвейера» - каскадного процесса освобождения энергии. Аккумуляция и транспорт энергии осуществляются с помощью одного и универсального для всех организмов источника энергии функциональной деятельности клетки - АТФ.

Основные вещества, из которых клетка черпает энергию в АТФ, - широко распространенные моносахариды, в первую очередь глюкоза. Среди многих способов распада глюкозы важную роль играют два тесно связанных между собой процесса, базирующихся на анаэробном расщеплении субстрата, - гликолиз и разные типы брожения продуктов гликолиза.

В обмене веществ выделяют два этапа: ассимиляцию и диссимиляцию . Ассимиляция (уподобление) включает в себя поступление в организм продуктов питания (и кислорода), предварительную переработку этих веществ (пищеварение), всасывание продуктов пищеварения (и кислорода) в кровь, распределение их по организму и поступление в клетки. Завершается ассимиляция синтезом специфических для организма молекул: структурных веществ, запасных источников энергии, веществ – регуляторов.

К ассимиляции близко по смыслу понятие анаболизм , часто их даже отождествляют. Однако, точнее называть анаболизмом важнейший этап ассимиляции – синтез из продуктов пищеварения специфических для организма веществ. В соответствии с этим термин анаболики применим к любым веществам, оказывающим стимулирующее влияние на процессы синтеза специфических для организма веществ.

Диссимиляция - распад веществ организма на конечные продукты обмена веществ и удаление из организма. Расщепление веществ в процессе пищеварения обеспечивает усвоение пищевых продуктов и может быть относено к ассимиляции. Так, например, усвоение пищевых белков невозможно без их предварительного расщепления на аминокислоты, которые затем поступают в кровь, разносятся ею по организму, поступают в клетки и используются для синтеза белков и других веществ.

Некоторые конечные продукты пищеварения могут не включаться в процессы ассимиляции, а расщепляться до конечных продуктов обмена веществ. Например, образовавшаяся в процессе пищеварения сложных углеводов глюкоза может использоваться в качестве источника энергии и расщепляться до СО 2 и Н 2 О. В этом случае пищеварительные превращения могут рассматриваться как начальный этап диссимиляции. Процессы, которые могут быть частью как ассимиляции, так и диссимиляции, получили название амфимолические.

За расщеплением тканевых белков на аминокислоты, как правило, следует их дальнейшая деградация. Т.е. отдельные этапы ассимиляции и диссимиляции могут быть представлены одинаковыми химическими превращениями.



Термин катаболизм , который нередко отождествляется с диссимиляцией, по существу, характеризует химическую часть диссимиляции – деградацию веществ организма на конечные продукты обмена веществ.

Ассимиляция и диссимиляция не два самостоятельных процесса, а две стороны одного процесса, теснейшим образом взаимосвязанные и взаимозависимые. Так, синтез специфических для организма веществ, происходящий в процессе ассимиляции, требует затрат значительных количеств энергии. Эту энергию организм получает, главным образом, в процессе аэробного биологического окисления – составной части процесса диссимиляции. Т. е. усилению процесса ассимиляции обязательно сопутствует усиление диссимиляции.

С другой стороны, интенсивно идущие процессы диссимиляции, заключающиеся в усиленном распаде веществ организма, являются мощным стимулом для процессов ассимиляции, обеспечивающих синтез этих веществ взамен распавшихся.

Этапы обмена веществ

Диссимиляция, как и ассимиляция, характеризуется многостадийностью превращений. Можно выделить три этапа превращений. На первом этапе макромолекулы углеводов, белков и липидов распадаются в процессах гидролиза на более простые вещества - мономеры. На этом этапе освобождается незначительное количество заключенной в них энергии – не более 1-3%.

Второй этап можно рассматривать как этап универсализации. Превращения углеводов, жиров и отчасти белков сходятся. Образуются единые промежуточные продукты, главным образом Ацетил-К 0 А. На этом этапе освобождается более значительное количество энергии – около 1/3 от исходных запасов.

Третий, заключительный этап превращений представляет собой аэробное окисление веществ, завершающееся образованием конечных продуктов обмена (СО 2 , Н 2 О, мочевины и др.), которые устраняются из организма. На этом этапе освобождается основное количество энергии – 2/3 потенциальной энергии исходных продуктов.

На рис. 1 представлены этапы расщепления питательных веществ в организме.

Рис. 1. Этапы катаболических превращений веществ в организме.

Та часть обмена веществ, которая заключается в химических превращениях (распаде, синтезе и т.п.) различных соединений, называется промежуточным обменом или метаболизмом , а вещества, участвующие в этих превращениях – метаболитами.

Поступление в организм продуктов питания и кислорода, а также выделение из организма конечных продуктов обмена веществ, принято называть обменом с внешней средой.

Достаточно широко распространено понятие функциональный обмен , под которым понимается комплекс химических превращений, обеспечивающих функциональную активность клетки, органа, ткани. Примером функционального обмена могут быть химические превращения, обеспечивающие мышечное сокращение, работу печени, почек и т.п. Функциональный обмен тесно связан с энергетическим обменом , поставляющим для него энергию. Под энергетическим обменом понимается комплекс превращений, обеспечивающих организм энергией в доступной для него форме – приводящих к синтезу АТФ и других подобных ему соединений.

Все живые организмы способны к обмену веществ с окружающей средой, поглощая из нее элементы, необходимые для питания, и выделяя продукты жизнедеятельности. В круговороте органических веществ самыми существенными стали процессы синтеза и распада.

Ассимиляция или пластический обмен – совокупность реакций синтеза, которые идут с затратой энергии АТФ. В процессе ассимиляции синтезируются органические вещества, необходимые клетке. обеспечивает рост, развитие, обновление организма и накопление запасов, используемых в качестве источника энергии. Организмы с точки зрения термодинамики представляют собой открытые системы, т. е. могут существовать только при непрерывном притоке энергии извне. Ассимиляция уравновешивается суммой процессов диссимиляции (распада). Примером таких реакций являются фотосинтез, биосинтез белка и репликация ДНК.

Аминокислоты -> Белки

Глюкоза -> Полисахариды

Глицерин + Жирные кислоты -> Жиры

Нуклеотиды -> Нуклеиновые кислоты

Другая сторона обмена веществ - процессы диссимиляции, в результате которых сложные органические соединения распадаются на простые соединения, при этом утрачивается их сходство с веществами организма и выделяется энергия, запасаемая в виде АТФ, необходимая для реакций биосинтеза. Поэтому диссимиляцию называют еще энергетическим обменом. Наиболее важными процессами энергетического обмена являются дыхание и брожение.

Белки -> Аминокислоты

Полисахариды -> Глюкоза

Жиры -> Глицерин + Жирные кислоты

Нуклеиновые кислоты -> Нуклеотиды

Обмен веществ обеспечивает постоянство химического состава и строения всех частей организма и как следствие - постоянство функционирования в непрерывно меняющихся условиях окружающей среды.

Дезоксирибонуклеиновая кислота, ее строение и свойства. Мономеры ДНК. Способы соединения нуклеотидов. Комплементарность нуклеотидов. Антипараллельные полинуклеотидные цепи. Репликация и репарация.

Структура молекулы ДНК была расшифрована в 1953г Уотсоном, Криком, Уилкинсом. Это две спирально закрученные антипараллельные (напротив конца 3 / одной цепи располагается 5 / конец другой) полинуклеотидные цепи. Мономерами ДНК являются нуклеотиды , в состав каждого из них входят: 1) дезоксирибоза; 2) остаток фосфорной кислоты; 3) одно из четырех азотистых оснований (аденин, тимин, гуанин, цитозин).). В клетках прокариотических организмов (бактерий и архей) кольцевая или линейная молекула ДНК, так называемый нуклеоид , прикреплена изнутри к клеточной мембране. ДНК - это длинная полимерная молекула, состоящая из повторяющихся блоков - нуклеотидов. Нуклеотиды соединяются в цепочку благодаря фосфорно-диэфирным связям между дезоксирибозой одного остатка и остатком фосфорной кислоты другого нуклеотида. Азотистые основания присоединяются к дезоксирибозе и образуют боковые радикалы. Между азотистыми основаниями цепочек ДНК устанавливаются водородные связи (2 между А и Т, 3 между Г и Ц). Строгое соответствие нуклеотидов друг другу в парных цепочках ДНК называется комплементарностью.


РЕПАРАЦИЯ ДНК- особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах ДНК, повреждённой при нормальном биосинтезе ДНК в клетке или в результате воздействия физических или химических агентов. Осуществляется специальными ферментными системами клетки. Ряд наследственных болезней (напр., пигментная ксеродерма) связан с нарушениями систем репарации. Каждая из систем репарации включает следующие компоненты:

ДНК-хеликаза - фермент, «узнающий» химически изменённые участки в цепи и осуществляющий разрыв цепи вблизи от повреждения; фермент, удаляющий повреждённый участок;

ДНК-полимераза - фермент, синтезирующий соответствующий участок цепи ДНК взамен удалённого;

ДНК-лигаза - фермент, замыкающий последнюю связь в полимерной цепи и тем самым восстанавливающий её непрерывность.

Репликация молекул ДНК происходит в синтетический период интерфазы. Каждая из двух цепей "материнской" молекулы служит матрицей для "дочерней". После репликации вновь синтезированная молекула ДНК содержит одну "материнскую" цепочку, а вторую - "дочернюю", вновь синтезированную (полуконсервативный способ). Для матричного синтеза новой молекулы ДНК необходимо, чтобы старая молекула была деспирализована и вытянута. Репликация начинается в нескольких местах молекулы ДНК. Участок молекулы ДНК от точки начала одной репликации до точки начала другой называется репликоном . Прокариотическая клетка содержит один репликон, а эукариотическая - содержит много репликонов. Начало репликации активируется праймерами (затравками), состоящими из 100-200 пар нуклеотидов. Фермент ДНК-геликаза раскручивает и разделяет материнскую спираль ДНК на 2 нити, на которых по принципу комплементарности при участии фермента ДНК-полимеразы собираются «дочерние» цепи ДНК . Фермент ДНК-топоизомераза скручивает «дочерние» молекулы ДНК. В каждом репликоне ДНК-полимераза может двигаться вдоль «материнской» нити только в одном направлении (3/ ⇒ 5/). Таким образом, присоединение комплементарных нуклеотидов дочерних нитей идет в противоположных направлениях (антипараллельно). Репликация во всех репликонах идет одновременно. Фрагменты Оказаки и части «дочерних» нитей, синтезированные в разных репликонах, сшиваются в единую нить ферментом лигазой . Репликация характеризуется полуконсервативностью, антипараллельностью и прерывистостью (фрагменты Оказаки).

Механизм репарации основан на наличии в молекуле ДНК двух комплементарных цепей. Искажение последовательности нуклеотидов в одной из них обнаруживается специфическими ферментами. Затем соответствующий участок удаляется и замещается новым, синтезированным на второй комплементарной цепи ДНК. Такую репарацию называют эксцизионной , т.е. с «вырезанием». Она осуществляется до очередного цикла репликации, поэтому ее называют также дорепликативной .

В том случае, когда система эксцизионной репарации не исправляет изменения, возникшего в одной цепи ДНК, в ходе репликации происходит фиксация этого изменения и оно становится достоянием обеих цепей ДНК. Это приводит к замене одной пары комплементарных нуклеотидов на другую либо к появлению разрывов (брешей) во вновь синтезированной цепи против измененных участков. Пострепликативная репарация осуществляется путем рекомбинации (обмена фрагментами) между двумя вновь образованными двойными спиралями ДНК. Пример- восстановление нормальной структуры ДНК при возникновении тиминовых димеров (Т-Т) Ковалентные связи, возникающие между рядом стоящими остатками тимина, делают их не способными к связыванию с комплементарными нуклеотидами. В результате во вновь синтезируемой цепи ДНК появляются разрывы (бреши), узнаваемые ферментами репарации. Восстановление целостности новой полинуклеотидной цепи одной из дочерних ДНК осуществляется благодаря рекомбинации с соответствующей ей нормальной материнской цепью другой дочерней ДНК. Образовавшийся в материнской цепи пробел заполняется затем путем синтеза на комплементарной ей полинуклеотидной цепи. Проявлением такой пострепликативной репарации, осуществляемой путем рекомбинации между цепями двух дочерних молекул ДНК, можно считать нередко наблюдаемый обмен материалом между сестринскими хроматидами.

18. Репликация молекулы ДНК. Репликон. Праймер. Принципы репликации ДНК: полуконсервативность, антипараллельность, прерывистость (фрагменты Оказаки). Фазы репликации: инициации, элонгации, терминации . Особенности репликации ДНК про- и эукариот.

Способность к самокопированию- репликация. Это свойство обеспечивается двухцепочечной структуре. В процессе репликации на каждой полинуклеотидной цепи материнской молекулы ДНК синтезируется комплементарная ей цепь. Такой способ удвоения молекул, при котором каждая дочерняя молекула содержит одну материнскую и одну вновь синтезированную цепь, называют полуконсервативным .

Для осуществления репликации цепи материнской ДНК должны быть отделены друг от друга, чтобы стать матрицами, на которых будут синтезироваться комплементарные цепи дочерних молекул. C помощью фермента геликазы , разрывающего водородные связи, двойная спираль ДНК расплетается в точках начала репликации. Образующиеся одинарные цепи ДНК связываются специальными дестабилизирующими белками, которые растягивают остовы цепей, делая их азотистые основания доступными для связывания с комплементарными нуклеотидами, находящимися в нуклеоплазме. На каждой из цепей, образующихся в области репликационной вилки, при участии фермента ДНК-полимеразы осуществляется синтез комплементарных цепей.

Cинтез второй цепи ДНК осуществляется короткими фрагментами (фрагменты Оказаки ) также в направлении от 5"- к 3"-концу. Синтезу каждого такого фрагмента предшествует образование РНК-затравки длиной около 10 нуклеотидов. Вновь образованный фрагмент с помощью фермента ДНК-лигазы соединяется с предшествующим фрагментом после удаления его РНК-затравки. В связи с указанными особенностями репликационная вилка является асимметричной. Из двух синтезируемых дочерних цепей одна строится непрерывно, ее синтез идет быстрее и эту цепь называют лидирующей . Синтез другой цепи идет медленнее, так как она собирается из отдельных фрагментов, требующих образования, а затем удаления РНК-затравки. Поэтому такую цепь называют запаздывающей (отстающей ). Хотя отдельные фрагменты образуются в направлении 5" → 3", в целом эта цепь растет в направлении 3" → 5". Репликация ДНК у про- и эукариот в основных чертах протекает сходно, однако, скорость синтеза у эукариот на порядок ниже, чем у прокариот. Причиной этого может быть образование ДНК эукариот достаточно прочных соединений с белками, что затрудняет ее деспирализацию, необходимую для осуществления репликативного синтеза.

Праймер - это короткий фрагмент нуклеиновой кислоты, комплементарный ДНК- или РНК-мишени, служит затравкой для синтеза комплементарной цепи с помощью ДНК-полимеразы, а также при репликации ДНК. Затравка необходима ДНК-полимеразам для инициации синтеза новой цепи, с 3"-конца праймера. ДНК-полимераза последовательно добавляет к 3"-концу праймера нуклеотиды, комплементарные матричной цепи.

Репликон - единица процесса репликации участка генома, к-рый находится под контролем одной точки инициации (начала) репликации. От точки инициации репликация идёт в обе стороны, в нек-рых случаях с неравной скоростью. Репликация ДНК - ключевое событие в ходе деления клетки. Принципиально, чтобы к моменту деления ДНК была реплицирована полностью и при этом только один раз. Это обеспечивается определёнными механизмами регуляции репликации ДНК. Репликация проходит в три этапа:

· инициация репликации

· элонгация

· терминация репликации.

Регуляция репликации осуществляется в основном на этапе инициации. Это достаточно легко осуществимо, потому что репликация может начинаться не с любого участка ДНК, а со строго определённого, называемого сайтом инициации репликации . В геноме таких сайтов может быть как всего один, так и много. С понятием сайта инициации репликации тесно связано понятие репликон. Репликон - это участок ДНК, который содержит сайт инициации репликации и реплицируется после начала синтеза ДНК с этого сайта.

Репликация начинается в сайте инициации репликации с расплетания двойной спирали ДНК, при этом формируется репликационная вилка - место непосредственной репликации ДНК. В каждом сайте может формироваться одна или две репликационные вилки в зависимости от того, является ли репликация одно- или двунаправленной. Более распространена двунаправленная репликация. Через некоторое время после начала репликации в электронный микроскоп можно наблюдать репликационный глазок - участок хромосомы, где ДНК уже реплицирована, окружённый более протяжёнными участками нереплицированной ДНК.

Полуконсервативность означает, что каждая дочерняя ДНК состоит из одной матричной цепи и одной вновь синтезированной.

Антипараллельность цепей ДНК: противоположная направленность двух нитей двойной спирали ДНК; одна нить имеет направление от 5" к 3", другая - от 3" к 5".

Каждая цепь ДНК имеет определенную ориентацию. Один конец несет гидроксильную группу (- ОН), присоединенную к 3"-углероду в сахаре дезоксирибозе, на другом конце цепи находится остаток фосфорной кислоты в 5"-положении сахара. Две комплементарные цепи в молекуле ДНК расположены в противоположных направлениях - антипараллельно: одна нить имеет направление от 5" к 3", другая - от 3" к 5". При параллельной ориентации напротив 3"-конца одной цепи находился бы З"-конец другой.

У прокариот одна из нитей ДНК разрывается и один конец ее прикрепляется к клеточной мембране, а на противоположном конце происходит синтез дочерних нитей. Такой синтез дочерних нитей ДНК получил название «катящегося обруча». Репликация ДНК протекает быстро.



Похожие статьи