Что такое бензол? Строение бензола, формула, свойства, применение. Бензол: формула

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

по курсу органической химии

«АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ »

Ростов-на-Дону

Методические указания по курсу органической химии «Ароматические углеводороды». - Ростов н/Д: Рост. гос. строит. ун-т, 2007. - 12 с.

Излагаются теоретические положения по теме “Ароматические углеводороды”. Дается определение ароматическим углеводородам, а также понятию “ароматичности”. Описывается строение молекулы бензола. Рассматривается номенклатура и изомерия ароматических соединений с одним бензольным ядром. Приведены основные методы получения аренов, также рассмотрены физические и химические свойства ароматических углеводородов.

Рассчитано на студентов I и II курсов дневной и заочной форм обучения специальностей ПСМ, ЗЧС, ССП, БТП и АС.

Составители: канд. хим. наук, доц.

М.Н. Мицкая,

канд. хим. наук, ассист.

Е.А. Левинская

Рецензент: канд. хим. наук, доц.

Л.М. Астахова

© Ростовский государственный

строительный университет, 2007

Ароматические соединения (арены) - органические соединения с плоской циклической структурой, в которой все углеродные атомы создают единую делокализованную π-электронную систему, содержа­щую (4n+2) π-электронов.

К ароматическим соединениям относятся прежде всего бензол С 6 Н 6 и его многочисленные гомологи и производные. Ароматические соединения могут содержать в молекуле одно или не­сколько бензольных ядер (многоядерные ароматические соединения). Но мы рассмотрим ароматические соединения с одним бензольным ядром.

Строение молекулы бензола

Бензол обнаружен М. Фарадеем в 1825 г. в светильном (кок­совом) газе, а строение молекулы бензола чаще всего выражают формулой, пред­ложенной немецким химиком А. Кекуле (1865)

Согласно современным представлениям молекула бензола имеет строение плоского шестиугольника, стороны которого равны между собой и составляют 0,14 нм. Это расстояние является средним значе­нием между величинами 0,154 нм (длина одинарной связи) и 0,134 нм (длина двойной связи). Не только углеродные атомы, но и связанные с ними шесть атомов водорода лежат в одной плоскости. Углы, образо­ванные связями Н-С-С и С-С-С, равны 120°:

Все углеродные атомы в молекуле бензола находятся в состоянии sр 2 -гибридизации. Каждый из них связан тремя своими гибридными орбиталями с двумя такими же орбиталями двух соседних углеродных атомов и одной орбиталью атома Н, образуя три σ-связи (см. рисунок). Четвертая, негибридизованная 2р-орбиталь атома углерода, ось которой перпендикулярна плоскости бензольного кольца, перекрывается с подобными орбиталями двух со­седних углеродных атомов, расположенных справа и слева.


Схема образования σ-связей и π-связей в молекуле бензола

Такое перекрывание происходит над и под плоскостью бензольного кольца. В результа­те образуется единая замкнутая система π-электронов. В результате такого равномерного пере­крывания 2р-орбиталей всех шести углерод­ных атомов происходит «выравнивание» простых и двойных связей, т.е. в бензольном кольце отсутствуют классические двойные и одинарные связи. Равномерное распределение π-электронной плотности между всеми углеродными атомами, обусловленное π-электронной делокализацией, и является причиной высокой устойчивости молекулы бензола. В настоящее время нет единого способа графического изображения молекулы бензола с учетом его реальных свойств. Но чтобы подчеркнуть выравненность π-электронной плотности в молекуле бензола, прибегают к помощи следующих формул:

Необходимо, однако, помнить, что ни одна из этих формул не отвечает действительному физическому состоянию молекулы, а тем более не может отразить все многообразие ее свойств. Формула Кекуле в насто­ящее время является лишь символом молекулы бензола. Однако ее ши­роко применяют, помня при этом о ее недостатках.

Тип урока: урок изучения нового материала.

Вид урока: проблемная лекция.

Главная дидактическая цель урока: добиться понимания содержания учебного материала всеми учащимися.

Обучающие цели урока:

  • углубить знания об углеводородах;
  • познакомить учащихся с новым типом химической связи, характерным для данной группы соединений, на примере бензола; дать понятие об ароматичности;

Развивающие цели урока:

  • развивать у учащихся умение выделять главное, существенное в учебном материале, сравнивать, обобщать и систематизировать, устанавливать причинно-следственные связи;
  • способствовать развитию волевых и эмоциональных качеств личности;
  • особое внимание обратить на развитие интереса к предмету и речи учащихся.

Воспитательные цели урока: содействовать формированию мировоззренческих идей:

  • материальность мира;
  • непрерывность процесса познания.

Оборудование урока:

  • реактивы: бензол, р-р КМnО 4 , бромная вода;
  • шаростержневая модель молекулы бензола (по Кекуле);
  • опорные конспекты, таблицы.

Ход урока

Эпиграф к уроку:

«Не в количестве знаний заключается образование,
а в полном понимании и искусном применении всего
того, что знаешь».
А.Дистервег.

На прошлом уроке я задала повторить решение задач на нахождение формулы вещества и характеристику веществ изученных классов.

Решаем задачи на нахождение молекулярной формулы вещества и даем характеристику веществам, отвечающим полученному составу.

К доске:

1+2 учащихся (решают задачи по карточкам).

ЗАДАЧА № 1

Вывести формулу вещества, содержащего 82,75% углерода 17,25% водорода. Относительная плотность паров этого вещества по воздуху равна 2.

ЗАДАЧА № 2

Определите молекулярную формулу углеводорода, массовая доля углерода в котором равна 85,7% ,а водорода – 14,3%. Относительная плотность вещества по водороду равна 28.

Класс + ученик у доски:

ЗАДАЧА № 3

Какова молекулярная формула вещества, в котором массовая доля углерода равна 93,2%. Относительная плотность по водороду равна 39.

Ответ:С6Н6 истиная формула

При решении третьей задачи получили в-во состава С6Н6. К какому же из известных классов углеводородов можно отнести это вещество?

Это вещество мы не можем отнести ни к одному из изученных классов углеводородов.

Итак, проблема!, которую нам предстоит вместе решить. Сегодня мы познакомимся с новой группой углеводородов, которые называются ароматические.

ТЕМА УРОКА: Ароматические углеводороды (арены). Бензол. Строение молекулы.

Наши главные задачи сегодня:

  1. Углубить знания об углеводородах, расширить представления о многообразии органических соединений.
  2. Познакомиться с новым типом химической связи, характерным для данной группы углеводородов.

План лекции:

  1. Арены – один из классов углеводородов.
  2. История открытия бензола.
  3. Строение молекулы бензола.
    а) строение бензола по Кекуле;
    б) современные представления об электронном строении бензола;
    в) понятие об ароматическом ядре и полуторной связи.

Д/з с. 51-53, оформить конспект лекции.

Сегодня на уроке мы познакомимся с новой группой углеводородов, которые называются ароматические или арены.

Ароматическими эти углеводороды были названы потому, что первые известные представители их обладали приятным запахом. Позднее оказалось, что большинство веществ, которые по хим. свойствам принадлежат к той же группе, не имеют ароматного запаха. Однако исторически сложившееся общее название этих соединений осталось за ними до наших дней.

Простейший представитель ароматических углеводородов – бензол.

Предыдущие классы углеводородов изучались на основе причинно – следственных связей: состав – строение – свойства – применение. Этот же логический принцип мы оставим и сейчас.

Состав вещества мы установили – С 6 Н 6 . Это бензол. Бензол – это тоже углеводород, но углеводород, принципиально отличающийся от тех, о которых шла речь. Что же такое бензол?

Давайте узнаем историю открытия бензола. (Сообщения учащихся).

1-й ученик.

В 1825 г. М. Фарадей выделил из светильного газа, производившегося в то время в Англии из каменного угля, жидкость, состоящую из углерода и водорода. Через несколько лет (в1834 г.)

Э.Митчерлих при перегонке бензойной кислоты получил вещество, тождественное фарадеевскому, назвал его бензином, для того чтобы подчеркнуть генетическую связь с бензойной кислотой, и установил, что оно имеет элементарный состав С 6 Н 6 (в англосаксонских странах и сейчас за бензолом сохранилось это название).

Позднее Ю. Либих рекомендовал дать этому соединению укоренившееся название – бензол (окончание – ол указывает на его маслянистый характер от лат. оleim – масло). В 1845 г. А.В.Гофманн выделил впервые бензол из каменноугольной смолы.

2-й ученик.

«Днем рождения» теории строения бензола как ароматического соединения является 27 янаря 1865 г. – день, когда была опубликована в Бюллетене Парижского химического общества информация о «Конституции ароматических веществ».

Переходим к следующему этапу: установим строение молекулы бензола. Как мы уже определили ни к одному из известных классов углеводородов бензол отнести нельзя. Но, попробуем представить себе какие могут быть варианты его формулы:

Можно еще придумать изомеры, отличающиеся положением двойных и тройных связей.

Теперь у нас есть то, что называется рабочей гипотезой. Попробуем проверить ее. Если удастся доказать правильность одной из предложенных нами структур, гипотеза превратится в теорию, если нет – будем думать дальше.

Есть очень простая реакция, которая позволяет быстро и надежно установить наличие двойных или тройных связей в ненасыщенных углеводородах. Какая?

Это присоединение брома по кратным связям. Если предположить, что верна 3-я формула, то должно получиться следующее соединение: СН 2 Вr-СНВr-CВr 2 -СВr 2 -CH 2 Вr-СН 2 Вr

Достаточно несколько раз встряхнуть непредельный углеводород с бромной водой, как желтый раствор обесцветиться.

Демонстрационный опыт.

Встряхиваем бензол с бромной водой - никакого эффекта!

Значит наши предположения неверны.

Можно попробовать присоединить к молекуле бензола не бром, а водород. В наших условиях это сделать нельзя. Но если это сделать в специальном приборе над катализатором, то можно получить из бензола углеводород с формулой

Если подействовать на него бромной водой – реакция отрицательная. Тогда остается предположить, что углеводород С 6 Н 12 имеет замкнутое циклическое строение. Это кольцо состоит из шести групп СН 2:

По- видимому, бензол тоже имеет циклическую структуру. И формула для него напрашивается такая:

С двойными связями? Но бромная вода!???

Приходится предположить , что три двойные связи, сведенные в месте в одном шестичленном кольце ведут себя как-то по-новому.

Формула бензола – шестиугольник с тремя двойными связями – подтверждается синтезом бензола из ацетилена. Из трех молекул ацетилена получается одно бензольное кольцо. При этом одна из трех связей ацетилена как бы идет на образование простой связи с углеродным атомом другой молекулы, а две остаются. В результате получаем чередование двойных и простых связей.

Так или примерно так рассуждал немецкий химик Фидрих Август Кекуле, когда в 1865 году впервые пришел к выводу, что бензол – это шестиугольник с чередующимися двойными и простыми связями.

Формула Кекуле была встречена бурными дебатами, которые не утихали еще в течение многих десятилетий. Действительно, какие-то свойства бензола эта формула хорошо объясняла , а какие-то ей противоречили.

Оказалось, что бензол все-таки может при некоторых условиях присоединять галогены, например шесть атомов хлора, по всем трем двойным связям. Но с другой стороны, атомы водорода в бензоле очень легко могут быть замещены на другие группы (мы еще поговорим об этом). Эта способность – одна из основных в комплексе свойств бензола, которая называется ароматичностью. Ароматичность (т.е. способность легко заменять атомы водорода) никак не объясняется формулой Кекуле. Далее. Для каждого двузамещенного бензола, судя по этой формуле, должны существовать два изомера . Например, для орто – ксилола это изомеры:

На самом деле никому не удавалось выделить два изомера орто – ксилола. Пришлось создателю теории строения бензола вносить «уточнения» в свою формулу. Кекуле предположил, что двойные связи не закреплены в бензоле, а все время перемещаются.

Споры вокруг теории строения бензола прекратились всего несколько десятилетий назад. Каковы же современные представления об электронном строении бензола?

Немецкий химик Э. Хюккель применил к ароматическим соединениям квантомеханическую теорию и показал, что каждый атом углерода находится в SP² гибридизированном состоянии. Что это значит?

Класс (ученик у доски).

Из четырех электронов каждого углерода один S и два P – электрона образуют три совершенно одинаковые SP² - гибридные орбитали, которые лежат в одной плоскости под углом 120° друг к другую. Две из этих орбиталей используются для перекрывания с такими же орбиталями двух соседних углеродов, а одна – для образования с атомом водорода.

Все эти электроны образуют электронный остов бензола.

Над и под каждым углеродным атомом расположена объемная восьмерка Р – электрона.

Теперь представим себе, что в бензольном кольце восьмерки Р – электронов попарно перекрываются «боками», т.е. образуют три двойные связи. Это и есть электронная модель бензола, описываемая на бумаге формулой Кекуле. (показать шаростержневую модель).

Если формула Кекуле верна, то расстояние в молекуле бензола между двумя соседними атомами углерода должны быть разными: 0,154 нм между атомами у которых р- облака не перекрываются и 0,133 нм между углеродами, связанными П – связью.

Но исследование бензола физическими методами показало, что все расстояния в молекуле строго одинаковы и длинна связи С – С равна 0,140 нм, т.е. среднему значению между длинами простой и двойной связями. Логично предположить, что каждая электронная восьмерка – орбиталь перекрывается одинаково и одновременно с такими же восьмерками двух соседей.

В проекции на плоскость молекулы эти электронные облака будут казаться перекрывающимися окружностями (показать по таблице). В молекуле образуется не три отдельные П – связи, а единая П – электронная система из шести электронов, общая для всех атомов углерода. Под влиянием этого общего для молекулы П - электронного облака и сокраается расстояние между атомами углерода с 0,154 до 0,140 нм.

Масштабная (объемная) модель молекулы бензола представлена в таблице (показать). Поскольку электронная плотность распределяется в молекуле равномерно, все связи между атомами С оказываются совершенно одинаковыми.

Таким образом, химические связи в бензоле не одинарные и не двойные, а как принято поворить полуторные, промежуточные по своему характеру. Эти связи еще называют ароматическими, они прочнее П – связей (поэтому бромная вода не обесцветилась – атомы брома не присоединяются).

Чтобы показать равномерность распределения электр. Плотности в молекуле бензола, структурную формулу его часто изображают в виде шестиугольника с окружностью внутри:

Такая структура называется бензольным или ароматическим ядром. А углеводороды, в составе молекул, в котором содержится ароматическое ядро, называются ароматическими углеводородами.

Фактически, эта структура молекулы бензола несет в себе черты строения и первой и второй структуры и представляет качественно новую систему. Давайте проведем аналогию, построенную на ваших биологических знаниях: гибрид лошади и осла – мул. Мул несет в себе признаки и лошади, и осла, но является совершенно новым животным с присущими только ему признаками. И поэтому, если мы хотим человеку, никогда не видевшему мула, описать это животное, мы можем рассказать о лошади, об осле, а потом заявить: мул – это нечто среднее.

Но и сейчас нередко еще пользуются формулой Кекуле, учитывая при этом, что она лишь условно передает строение молекулы.

Давайте подведем итог: (закрепление знаний)

  1. Какие углеводороды называют ароматическими?
  2. Какой вид гибридизации характерен для ароматического ядра?
  3. Что собой представляет бензольное ядро?
  4. Как образуется единая П – связь?
  5. Назовите углы между направлениями связей в ароматическом ядре?
  6. Назовите расстояние между атомами углерода?
  7. Какие связи называются ароматическими (полуторными)?

Урок окончен! До свидания!

Понятие «бензольное кольцо» сразу требует расшифровки. Для этого необходимо хотя бы коротко рассмотреть строение молекулы бензола. Первая структура бензола была предложена в 1865 г. немецким ученым А. Кекуле:



К наиболее важным ароматическим углеводородам относятся бензол С 6 Н 6 и его гомологи: толуол С 6 Н 5 СН з, ксилол С 6 Н 4 (СН з) 2 и др.; нафталин C 10 H 8 , антрацен С 14 Н 10 и их производные.


Атомы углерода в молекуле бензола образуют правильный плоский шестиугольник, хотя обычно его рисуют вытянутым.


Окончательно строение молекулы бензола подтверждено реакцией образования его из ацетилена. В структурной формуле изображается по три одинарных и три двойных чередующихся углерод-углеродных связей. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны, и они обладают свойствами, не похожими на свойства ни одинарных, ни двойных связей. Эти особенности объясняются электронным строением молекулы бензола.

Электронное строение бензола

Каждый атом углерода в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. В результате образуется плоский шестиугольник: все шесть атомов углерода и все σ-связи С-С и С-Н лежат в одной плоскости. Электронное облако четвертого электрона (р-электрона), не участвующего в гибридизации, имеет форму гантели и ориентировано перпендикулярно к плоскости бензольного кольца. Такие р-электронные облака соседних атомов углерода перекрываются над и под плоскостью кольца.



В результате шесть р-электронов образуют общее электронное облако и единую химическую связь для всех атомов углерода. Две области большой электронной плоскости расположены по обе стороны плоскости σ-связей.



p-Электронное облако обусловливает сокращение расстояния между атомами углерода. В молекуле бензола они одинаковы и равны 0,14 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет простых и двойных связей. Молекула бензола - устойчивый шестичленный цикл из одинаковых СН-групп, лежащих в одной плоскости. Все связи между атомами углерода в бензоле равноценны, чем и обусловлены характерные свойства бензольного ядра. Наиболее точно это отражает структурная формула бензола в виде правильного шестиугольника с окружностью внутри (I). (Окружность символизирует равноценность связей между атомами углерода.) Однако часто пользуются и формулой Кекуле с указанием двойных связей (II):



Бензольное ядро обладает определенной совокупностью свойств, которую принято называть ароматичностью.

Гомологический ряд, изомерия, номенклатура

Условно арены можно разделить на два ряда. К первому относят производные бензола (например, толуол или дифенил), ко второму - конденсированные (полиядерные) арены (простейший из них - нафталин):



Гомологический ряд бензола имеет общую формулу С n Н 2 n -6 . Гомологи можно рассматривать как производные бензола, в котором один или несколько атомов водорода замещены различными углеводородными радикалами. Например, С 6 Н 5 -СН 3 - метилбензол или толуол, С 6 Н 4 (СН 3) 2 - диметилбензол или ксилол, С 6 Н 5 -С 2 Н 5 - этилбензол и т.д.



Так как в бензоле все углеродные атомы равноценны, то у первого его гомолога - толуола - изомеры отсутствуют. У второго гомолога - диметилбензола - имеются три изомера, отличающиеся взаимным расположением метильных групп (заместителей). Это орто- (сокращенно о-), или 1,2-изомер, в нем заместители находятся у соседних атомов углерода. Если заместители разделены одним атомом углерода, то это мета- (сокращенно м-) или 1,3-изомер, а если они разделены двумя атомами углерода, то это пара- (сокращенно п-) или 1,4-изомер. В названиях заместители обозначаются буквами (о-, м-, п-) или цифра­ми.



Физические свойства

Первые члены гомологического ряда бензола - бесцветные жидкости со специфическим запахом. Плотность их меньше 1 (легче воды). В воде нерастворимы. Бензол и его гомологи сами являются хорошими растворителями для многих органических веществ. Арены горят коптящим пламенем ввиду высокого содержания углерода в их молекулах.

Химические свойства

Ароматичность определяет химические свойства бензола и его гомологов. Шестиэлектронная π-система является более устойчивой, чем обычные двухэлектронные π-связи. Поэтому реакции присоединения менее характерны для ароматических углеводородов, чем для непредельных углеводородов. Наиболее характерными для аренов являются реакции замещения. Таким образом, ароматические углеводороды по своим химическим свойствам занимают промежуточное положение между предельными и непредельными углеводородами.

I. Реакции замещения

1. Галогенирование (с Cl 2 , Вr 2)


2. Нитрование


3. Сульфирование


4. Алкилирование (образуются гомологи бензола) - реакции Фриделя-Крафтса


Алкилирование бензола происходит также при его взаимодействии с алкенами:



Дегидрированием этилбензола получают стирол (винилбензол):



II. Реакции присоединения

1. Гидрирование


2. Хлорирование


III. Реакции окисления

1. Горение

2С 6 Н 6 + 15O 2 → 12СO 2 + 6Н 2 O

2. Окисление под действием КМnO 4 , К 2 Сr 2 O 7 , HNO 3 и др.

Не происходит химической реакции (сходство с алканами).

Свойства гомологов бензола

В гомологах бензола различают ядро и боковую цепь (алкильные радикалы). По химическим свойствам алкильные радикалы подобны алканам; влияние бензольного ядра на них проявляется в том, что в реакциях замещения всегда участвуют атомы водорода у атома углерода, непосредственно связанного с бензольным ядром, а также в более легкой окисляемости С-Н связей.



Влияние электронодонорного алкильного радикала (например, -СН 3) на бензольное ядро проявляется в повышении эффективных отрицательных зарядов на атомах углерода в орто- и пара-положениях; в результате облегчается замещение связанных с ними атомов водорода. Поэтому гомологи бензола могут образовывать тризамещенные продукты (а бензол обычно образует монозамещенные производные).

Ароматические УВ (арены) – это УВ, молекулы которых содержат одно или несколько бензольных колец.

Примеры ароматических УВ:

Арены ряда бензола (моноциклические арены)

Общая формула: C n H 2n-6 , n≥6

Простейшим представителем ароматических УВ является бензол, его эмпирическая формула С 6 Н 6 .

Электронное строение молекулы бензола

Общая формула моноциклических аренов C n H 2 n -6 показывает, что они являются ненасыщенными соединениями.

В 1856 г. немецкий химик А.Ф. Кекуле предложил циклическую формулу бензола с сопряженными связями (чередуются простые и двойные связи) - циклогексатриен-1,3,5:

Такая структура молекулы бензола не объясняла многие свойства бензола:

  • для бензола характерны реакции замещения, а не реакции присоединения, свойственные ненасыщенным соединениям. Реакции присоединения возможны, но протекают труднее, чем для ;
  • бензол не вступает в реакции, являющиеся качественными реакциями на непредельные УВ (с бромной водой и раствором КМnО 4).

Проведенные позже электронографические исследования показали, что все связи между атомами углерода в молекуле бензола имеют одинаковую длину 0,140 нм (среднее значение между длиной простой связи С-С 0,154 нм и двойной связи С=С 0,134 нм). Угол между связями у каждого атома углерода равен 120 о. Молекула представляет собой правильный плоский шестиугольник.

Современная теория для объяснения строения молекулы С 6 Н 6 использует представление о гибридизации орбиталей атома .

Атомы углерода в бензоле находятся в состоянии sp 2 -гибридизации. Каждый атом «С» образует три σ-связи (две с атомами углерода и одну с атомом водорода). Все σ-связи находятся в одной плоскости:

Каждый атом углерода имеет один р-электрон, который не участвует в гибридизации. Негибридизованные р-орбитали атомов углерода находятся в плоскости, перпендикулярной плоскости σ-связей. Каждое р-облако перекрывается с двумя соседними р-облаками, и в результате образуется единая сопряженная π-система (вспомните эффект сопряжения р-электронов в молекуле бутадиена-1,3, рассмотренный в теме «Диеновые углеводороды»):

Сочетание шести σ-связей с едиой π-системой называется ароматической связью.

Цикл из шести атомов углерода, связанных ароматической связью, называется бензольным кольцом, или бензольным ядром .

В соответствии с современными представлениями об электронном строении бензола молекулу С 6 Н 6 изображают следующим образом:

Физические свойства бензола

Бензол при обычных условиях - бесцветная жидкость; t o пл = 5,5 о С; t o кип. = 80 о С; имеет характерный запах; не смешивается с водой, хороший растворитель, сильно токсичен.

Химические свойства бензола

Ароматическая связь определяет химические свойства бензола и других ароматических УВ.

6π-электронная система является более устойчивой, чем обычные двухэлектроиные π-связи. Поэтому реакции присоединения менее характерны для ароматических УВ, чем для непредельных УВ. Наиболее характерными для аренов являются реакции замещения.

I . Реакции замещения

1.Галогенирование

2. Нитрование

Реакцию осуществляют смесью и кислот (нитрующая смесь):

3.Сульфирование

4.Алкилирование (замещение атома «Н» на алкильную группу) – реакции Фриделя-Крафтса , образуются гомологи бензола:

Вместо галогеналканов можно использовать алкены (в присутствии катализатора – AlCl 3 или неорганической кислоты):

II . Реакции присоединения

1.Гидрирование

2.Присоединение хлора

III. Реакции окисления

1. Горение

2С 6 Н 6 + 15О 2 → 12СО 2 + 6Н 2 О

2. Неполное окисление (KMnO 4 или K 2 Cr 2 O 7 в кислой среде). Бензольное кольцо устойчиво к действию окислителей. Реакция не происходит.

Получение бензола

В промышленности:

1) переработка нефти и угля;

2) дегидрирование циклогексана:

3) дегидроциклизация (ароматизация) гексана:

В лаборатории:

Сплавление солей бензойной кислоты со :

Изомерия и номенклатура гомологов бензола

Любой гомолог бензола имеет боковую цепь, т.е. алкильные радикалы, связанные с бензольным ядром. Первый гомолог бензола представляет собой бензольное ядро, связанное с метильным радикалом:

Толуол не имеет изомеров, поскольку все положения в бензольном ядре равноценны.

Для последующих гомологов бензола возможен один вид изомерии – изомерия боковой цепи, которая может быть двух видов:

1) изомерия числа и строения заместителей;

2) изомерия положения заместителей.

Физические свойства толуола

Толуол - бесцветная жидкость с характерным запахом, не растворимая в воде, хорошо растворяется в органических растворителях. Толуол менее токсичен, чем бензол.

Химические свойства толуола

I . Реакции замещения

1.Реакции с участием бензольного кольца

Метилбензол вступает во все реакции замещения, в которых участвует бензол, и проявляет при этом более высокую реакционную способность, реакции протекают с большей скоростью.

Метильный радикал, содержащийся в молекуле толуола, является заместителем рода, поэтому в результате реакций замещения в бензольном ядре получаются орто- и пара-производные толуола или при избытке реагента - трипроизводные общей формулы:

а) галогенирование

При дальнейшем хлорировании можно получить дихлорметилбензол и трихлорметилбензол:

II . Реакции присоединения

Гидрирование

III. Реакции окисления

1.Горение
C 6 H 5 CH 3 + 9O 2 → 7CO 2 + 4H 2 O

2. Неполное окисление

В отличие от бензола его гомологи окисляются некоторыми окислителями; при этом окислению подвергается боковая цепь, в случае толуола – метильная группа. Мягкие окислители типа MnO 2 окисляют его до альдегидной группы, более сильные окислители (KMnO 4) вызывают дальнейшее окисление до кислоты:

Любой гомолог бензола с одной боковой цепью окисляется сильным окислителем типа KMnO4 в бензойную кислоту, т.е. происходит разрыв боковой цепи с окислением отщепившейся части ее до СО 2 ; например:

При наличии нескольких боковых цепей каждая из них окисляется до карбоксильной группы и в результате образуются многоосновные кислоты, например:

Получение толуола:

В промышленности:

1) переработка нефти и угля;

2) дегидрирование метилциклогексана:

3) дегидроциклизация гептана:

В лаборатории:

1) алкилирование по Фриделю-Крафтсу;

2) реакция Вюрца-Фиттига (взаимодействие натрия со смесью галогенбензола и галогеналкана).

Химическое строение

Атомы углерода в молекуле бензола образуют правильный плоский шестиугольник, хотя обычно его рисуют вытянутым.

Окончательно строение молекулы бензола подтверждено реакцией образования его из ацетилена. В структурной формуле изображается по три одинарных и три двойных чередующихся углерод-углеродных связей. Но такое изображение не передает истинного строения молекулы. В действительности углерод-углеродные связи в бензоле равноценны, и они обладают свойствами, не похожими на свойства ни одинарных, ни двойных связей. Эти особенности объясняются электронным строением молекулы бензола.

Электронное строение бензола

Каждый атом углерода в молекуле бензола находится в состоянии sp 2 -гибридизации. Он связан с двумя соседними атомами углерода и атомом водорода тремя у-связями. В результате образуется плоский шестиугольник: все шесть атомов углерода и все у-связи С--С и С--Н лежат в одной плоскости. Электронное облако четвертого электрона (р-электрона), не участвующего в гибридизации, имеет форму гантели и ориентировано перпендикулярно к плоскости бензольного кольца. Такие р-электронные облака соседних атомов углерода перекрываются над и под плоскостью кольца. В результате шесть р-электронов образуют общее электронное облако и единую химическую связь для всех атомов углерода. Две области большой электронной плоскости расположены по обе стороны плоскости у-связей.

p-Электронное облако обусловливает сокращение расстояния между атомами углерода. В молекуле бензола они одинаковы и равны 0,14 нм. В случае простой и двойной связи эти расстояния составили бы соответственно 0,154 и 0,134 нм. Значит, в молекуле бензола нет простых и двойных связей. Молекула бензола - устойчивый шестичленный цикл из одинаковых СН-групп, лежащих в одной плоскости. Все связи между атомами углерода в бензоле равноценны, чем и обусловлены характерные свойства бензольного ядра. Наиболее точно это отражает структурная формула бензола в виде правильного шестиугольника с окружностью внутри (I). (Окружность символизирует равноценность связей между атомами углерода.) Однако часто пользуются и формулой Кекуле с указанием двойных связей (II)



Похожие статьи