Классическое и статистическое определение вероятности. Классическое определение вероятности

Под вероятностью события понимается некоторая числовая характеристика возможности наступления этого события. Существует несколько подходов к определению вероятности.

Вероятностью события А называется отношение числа благоприятствующих этому событию исходов к общему числу всех равновозможных несовместных элементарных исходов, образующих полную группу. Итак, вероятность события А определяется формулой

где m – число элементарных исходов, благоприятствующих А , n – число всех возможных элементарных исходов испытания.

Пример 3.1. В опыте с бросанием игральной кости число всех исходов n равно 6 и все они равновозможны. Пусть событие А означает появление четного числа. Тогда для этого события благоприятными исходами будут появление чисел 2, 4, 6. Их количество равно 3. Поэтому вероятность события А равна

Пример 3.2. Какова вероятность того, что в наудачу выбранном двузначном числе цифры одинаковы?

Двузначными числами являются числа от 10 до 99, всего таких чисел 90. Одинаковые цифры имеют 9 чисел (это числа 11, 22, …, 99). Так как в данном случае m =9, n =90, то

где А – событие, «число с одинаковыми цифрами».

Пример 3.3. В партии из 10 деталей 7 стандартных. Найти вероятность того, что среди шести взятых наудачу деталей 4 стандартных.

Общее число возможных элементарных исходов испытания равно числу способов, которыми можно извлечь 6 деталей из 10, т. е. числу сочетаний из 10 элементов по 6 элементов. Определим число исходов, благоприятствующих интересующему нас событию А (среди шести взятых деталей 4 стандартных). Четыре стандартные детали можно взять из семи стандартных деталей способами; при этом остальные 6-4=2 детали должны быть нестандартными, взять же две нестандартные детали из 10-7=3 нестандартных деталей можно способами. Следовательно, число благоприятствующих исходов равно .

Тогда искомая вероятность равна

Из определения вероятности вытекают следующие ее свойства:

1. Вероятность достоверного события равна единице.

Действительно, если событие достоверно, то каждый элементарный исход испытания благоприятствует событию. В этом случае m=n, следовательно

2. Вероятность невозможного события равна нулю.

Действительно, если событие невозможно, то ни один из элементарных исходов испытания не благоприятствует событию. В этом случае значит

3. Вероятность случайного события есть положительное число, заключенное между нулем и единицей.

Действительно, случайному событию благоприятствует лишь часть из общего числа элементарных исходов испытания. В этом случае < m < n, значит 0 < m/n < 1, т. е. 0 < Р(А) < 1. Итак, вероятность любого события удовлетворяет двойному неравенству


Построение логически полноценной теории вероятностей основано на аксиоматическом определении случайного события и его вероятности. В системе аксиом, предложенной А. Н. Колмогоровым, неопределяемыми понятиями являются элементарное событие и вероятность. Приведем аксиомы, определяющие вероятность:

1. Каждому событию А поставлено в соответствие неотрицательное действительное число Р(А) . Это число называется вероятностью события А .

2. Вероятность достоверного события равна единице.

3. Вероятность наступления хотя бы одного из попарно несовместных событий равна сумме вероятностей этих событий.

Исходя из этих аксиом, свойства вероятностей и зависимости между ними выводят в качестве теорем.

Вопросы для самопроверки

1. Как называется числовая характеристика возможности наступления события?

2. Что называется вероятностью события?

3. Чему равна вероятность достоверного события?

4. Чему равна вероятность невозможного события?

5. В каких пределах заключена вероятность случайного события?

6. В каких пределах заключена вероятность любого события?

7. Какое определение вероятности называется классическим?

Теория вероятностей - математическая наука, изучающая закономерности в случайных явлениях. Возникновение теории относится к середине XVII века и связано с именем Гюйгенса, Паскаля, Ферма, Я. Бернулли.

Неразложимые исходы,..., некоторого эксперимента будем называть элементарными событиями, а их совокупность

(конечным) пространством элементарных событий, или пространством исходов.

Пример 21. а) При подбрасывании игральной кости пространство элементарных событий состоит из шести точек:

б) Подбрасываем монету два раза подряд, тогда

где Г - "герб", Р - "решетка" и общее число исходов

в) Подбрасываем монету до первого появления "герба", тогда

В этом случае называется дискретным пространством элементарных событий.

Обычно интересуются не тем, какой конкретно исход имеет место в результате испытания, а тем, принадлежит ли исход тому или иному подмножеству всех исходов. Все те подмножества, для которых по условиям эксперимента возможен ответ одного из двух типов: "исход " или "исход ", будем называть событиями.

В примере 21 б) множество = {ГГ, ГР, РГ} является событием, состоящим в том, что выпадает по крайней мере один "герб". Событие состоит из трех элементарных исходов пространства, поэтому

Суммой двух событий и называется событие, состоящее в выполнении события или события.

Произведением событий и называется событие, состоящее в совместном исполнении события и события.

Противоположным по отношению к событию называется событие, состоящее в непоявлении и, значит, дополняющее его до.

Множество называется достоверным событием, пустое множество - невозможным.

Если каждое появление события сопровождается появлением, то пишут и говорят, что предшествует или влечет за собой.

События и называются равносильными, если и.

Определение. Вероятностью события называется число, равное отношению числа элементарных исходов, составляющих событие, к числу всех элементарных исходов

Случай равновозможных событий, (называется "классическим", поэтому и вероятность

называется "классической".

Элементарные события (исходы опыта), входящие в событие, называются "благоприятными".

Свойства классической вероятности:

Если (и - несовместные события).

Пример 22 (задача Гюйгенса). В урне 2 белых и 4 черных шара. Один азартный человек держит пари с другим, что среди вынутых 3 шаров будет ровно один белый. В каком отношении находятся шансы спорящих?

Решение 1 (традиционное). В данном случае испытание = {вынимание 3 шаров}, а событие - благоприятствующее одному из спорящих:

= {достать ровно один белый шар}.

Поскольку порядок вынимания трех шаров не важен, то

Один белый шар можно достать в случаев, а два черных - , и тогда по основному правилу комбинаторики. Отсюда а по пятому свойству вероятности Следовательно,

Решение 2. Составим вероятностное дерево исходов:

Пример 23. Рассмотрим копилку, в которой осталось четыре монеты - три по 2 руб. и одна в 5 руб. Извлекаем две монеты.

Решение. а) Два последовательных извлечения (с возвращением) могут привести к следующим исходам:

Какова вероятность каждого из этих исходов?

В таблице показаны все шестнадцать возможных случаев.

Следовательно,

К тем же результатам ведет и следующее дерево:

б) Два последовательных извлечения (без повторения) могут привести к следующим трем исходам:

В таблице покажем все возможные исходы:

Следовательно,

К тем же результатам ведет и соответствующее дерево:

Пример 24 (задача де Мере). Двое играют в "орлянку" до пяти побед. Игра прекращена, когда первый выиграл четыре партии, а второй - три. Как в этом случае следует поделить первоначальную ставку?

Решение. Пусть событие = {выиграть приз первым игроком}. Тогда вероятностное дерево выигрыша для первого игрока следующее:

Отсюда, и три части ставки следует отдать первому игроку, а второму - одну часть.

Покажем эффективность решения вероятностных задач с помощью графов и на следующем примере, который мы рассматривали в §1 (пример 2).

Пример 25. Является ли выбор с помощью "считалки" справедливым?

Решение. Составим вероятностное дерево исходов:

и, следовательно, при игре в "считалки" выгодней стоять вторым.

В последнем решении использованы интерпретации на графах теорем сложения и умножения вероятностей:

и в частности

Если и - несовместные события

и, если и - независимые события.

Статическая вероятность

Классическое определение при рассмотрении сложных проблем наталкивается на трудности непреодолимого характера. В частности, в некоторых случаях выявить равновозможные случаи может быть невозможно. Даже в случае с монеткой, как известно существует явно не равновероятная возможность выпадения "ребра", которую из теоретических соображений оценить невозможно (можно только сказать, что оно маловероятно и то это соображение скорее практическое). Поэтому еще на заре становления теории вероятностей было предложено альтернативное "частотное" определение вероятности. А именно, формально вероятность можно определить как предел частоты наблюдений события A, предполагая однородность наблюдений (то есть одинаковость всех условий наблюдения) и их независимость друг от друга:

где - количество наблюдений, а - количество наступлений события.

Несмотря на то, что данное определение скорее указывает на способ оценки неизвестной вероятности - путем большого количества однородных и независимых наблюдений - тем не менее в таком определении отражено содержание понятия вероятности. А именно, если событию приписывается некоторая вероятность, как объективная мера его возможности, то это означает, что при фиксированных условиях и многократном повторении мы должны получить частоту его появления, близкую к (тем более близкую, чем больше наблюдений). Собственно, в этом заключается исходный смысл понятия вероятности. В основе лежит объективистский взгляд на явления природы. Ниже будут рассмотрены так называемые законы больших чисел, которые дают теоретическую основу (в рамках излагаемого ниже современного аксиоматического подхода) в том числе для частотной оценки вероятности.

В экономике, так же как и в других областях человеческой деятельности или в природе, постоянно приходится иметь дело с событиями, которые невозможно точно предсказать. Так, объем продаж товара зависит от спроса, который может существенно изменяться, и от ряда других факторов, которые учесть практически нереально. Поэтому при организации производства и осуществлении продаж приходится прогнозировать исход такой деятельности на основе либо собственного предыдущего опыта, либо аналогичного опыта других людей, либо интуиции, которая в значительной степени тоже опирается на опытные данные.

Чтобы каким-то образом оценить рассматриваемое событие, необходимо учитывать или специально организовывать условия, в которых фиксируется это событие.

Осуществление определенных условий или действий для выявления рассматриваемого события носит название опыта или эксперимента .

Событие называется случайным , если в результате опыта оно может произойти или не произойти.

Событие называется достоверным , если оно обязательно появляется в результате данного опыта, и невозможным , если оно не может появиться в этом опыте.

Например, выпадение снега в Москве 30 ноября является случайным событием. Ежедневный восход Солнца можно считать достоверным событием. Выпадение снега на экваторе можно рассматривать как невозможное событие.

Одной из главных задач в теории вероятностей является задача определения количественной меры возможности появления события.

Алгебра событий

События называются несовместными, если они вместе не могут наблюдаться в одном и том же опыте. Так, наличие двух и трех автомашин в одном магазине для продажи в одно и то же время — это два несовместных события.

Суммой событий называется событие, состоящее в появлении хотя бы одного из этих событий

В качестве примера суммы событий можно назвать наличие в магазине хотя бы одного из двух товаров.

Произведением событий называется событие, состоящее в одновременном появлении всех этих событий

Событие, состоящее в появлении одновременно в магазине двух товаров является произведением событий: -появление одного товара, — появление другого товара.

События образуют полную группу событий, если хотя бы одно из них обязательно произойдет в опыте.

Пример. В порту имеется два причала для приема судов. Можно рассмотреть три события: — отсутствие судов у причалов, — присутствие одного судна у одного из причалов, — присутствие двух судов у двух причалов. Эти три события образуют полную группу событий.

Противоположными называются два единственно возможных события, образующих полную группу.

Если одно из событий, являющихся противоположными, обозначить через , то противоположное событие обычно обозначают через .

Классическое и статистическое определения вероятности события

Каждый из равновозможных результатов испытаний (опытов) называется элементарным исходом. Их обычно обозначают буквами . Например, бросается игральная кость. Элементарных исходов всего может быть шесть по числу очков на гранях.

Из элементарных исходов можно составить более сложное событие. Так, событие выпадения четного числа очков определяется тремя исходами: 2, 4, 6.

Количественной мерой возможности появления рассматриваемого события является вероятность.

Наиболее широкое распространение получили два определения вероятности события: классическое и статистическое .

Классическое определение вероятности связано с понятием благоприятствующего исхода.

Исход называется благоприятствующим данному событию, если его появление влечет за собой наступление этого события.

В приведенном примере рассматриваемое событие — четное число очков на выпавшей грани, имеет три благоприятствующих исхода. В данном случае известно и общее
количество возможных исходов. Значит, здесь можно использовать классическое определение вероятности события.

Классическое определение равняется отношению числа благоприятствующих исходов к общему числу возможных исходов

где — вероятность события , — число благоприятствующих событию исходов, — общее число возможных исходов.

В рассмотренном примере

Статистическое определение вероятности связано с понятием относительной частоты появления события в опытах.

Относительная частота появления события вычисляется по формуле

где - число появления события в серии из опытов (испытаний).

Статистическое определение . Вероятностью события называется число, относительно которого стабилизируется (устанавливается) относительная частота при неограниченном увеличении числа опытов.

В практических задачах за вероятность события принимается относительная частота при достаточно большом числе испытаний.

Из данных определений вероятности события видно, что всегда выполняется неравенство

Для определения вероятности события на основе формулы (1.1) часто используются формулы комбинаторики, по которым находится число благоприятствующих исходов и общее число возможных исходов.

Задачи на классическое определение вероятности.
Примеры решений

На третьем уроке мы рассмотрим различные задачи, касающиеся непосредственного применения классического определения вероятности. Для эффективного изучения материалов данной статьи рекомендую ознакомиться с базовыми понятиями теории вероятностей и основами комбинаторики . Задача на классическое определение вероятности с вероятностью, стремящейся к единице, будет присутствовать в вашей самостоятельной/контрольной работе по терверу, поэтому настраиваемся на серьёзную работу. Вы спросите, чего тут серьёзного? …всего-то одна примитивная формула . Предостерегаю от легкомыслия – тематические задания достаточно разнообразны, и многие из них запросто могут поставить в тупик. В этой связи помимо проработки основного урока, постарайтесь изучить дополнительные задачи по теме, которые находятся в копилке готовых решений по высшей математике . Приёмы решения приёмами решения, а «друзей» всё-таки «надо знать в лицо», ибо даже богатая фантазия ограничена и типовых задач тоже хватает. Ну а я постараюсь в хорошем качестве разобрать максимальное их количество.

Вспоминаем классику жанра:

Вероятность наступления события в некотором испытании равна отношению , где:

– общее число всех равновозможных , элементарных исходов данного испытания, которые образуют полную группу событий ;

– количество элементарных исходов, благоприятствующих событию .

И сразу незамедлительный пит-стоп. Понятны ли вам подчёркнутые термины? Имеется ввиду чёткое, а не интуитивное понимание. Если нет, то всё-таки лучше вернуться к 1-й статье по теории вероятностей и только после этого ехать дальше.

Пожалуйста, не пропускайте первые примеры – в них я повторю один принципиально важный момент, а также расскажу, как правильно оформлять решение и какими способами это можно сделать:

Задача 1

В урне находится 15 белых, 5 красных и 10 чёрных шаров. Наугад извлекается 1 шар, найти вероятность того, что он будет: а) белым, б) красным, в) чёрным.

Решение : важнейшей предпосылкой для использования классического определения вероятности является возможность подсчёта общего количества исходов .

Всего в урне: 15 + 5 + 10 = 30 шаров, и, очевидно, справедливы следующие факты:

– извлечение любого шара одинаково возможно (равновозможность исходов) , при этом исходы элементарны и образуют полную группу событий (т.е. в результате испытания обязательно будет извлечён какой-то один из 30 шаров) .

Таким образом, общее число исходов:

Рассмотрим событие: – из урны будет извлечён белый шар. Данному событию благоприятствуют элементарных исходов, поэтому по классическому определению:
– вероятность того, то из урны будет извлечён белый шар.

Как ни странно, даже в такой простой задаче можно допустить серьёзную неточность, на которой я уже заострял внимание в первой статье по теории вероятностей . Где здесь подводный камень? Здесь некорректно рассуждать, что «раз половина шаров белые, то вероятность извлечения белого шара » . В классическом определении вероятности речь идёт об ЭЛЕМЕНТАРНЫХ исходах, и дробь следует обязательно прописать!

С другими пунктами аналогично, рассмотрим следующие события:

– из урны будет извлечён красный шар;
– из урны будет извлечён чёрный шар.

Событию благоприятствует 5 элементарных исходов, а событию – 10 элементарных исходов. Таким образом, соответствующие вероятности:

Типичная проверка многих задач по терверу осуществляется с помощью теоремы о сумме вероятностей событий, образующих полную группу . В нашем случае события образуют полную группу, а значит, сумма соответствующих вероятностей должна обязательно равняться единице: .

Проверим, так ли это: , в чём и хотелось убедиться.

Ответ :

В принципе, ответ можно записать и подробнее, но лично я привык ставить туда только числа – по той причине, что когда начинаешь «штамповать» задачи сотнями и тысячами, то стремишься максимально сократить запись решения. К слову, о краткости: на практике распространён «скоростной» вариант оформления решения :

Всего: 15 + 5 + 10 = 30 шаров в урне. По классическому определению:
– вероятность того, то из урны будет извлечён белый шар;
– вероятность того, то из урны будет извлечён красный шар;
– вероятность того, то из урны будет извлечён чёрный шар.

Ответ :

Однако если в условии несколько пунктов, то решение зачастую удобнее оформить первым способом, который отнимает чуть больше времени, но зато всё «раскладывает по полочкам» и позволяет легче сориентироваться в задаче.

Разминаемся:

Задача 2

В магазин поступило 30 холодильников, пять из которых имеют заводской дефект. Случайным образом выбирают один холодильник. Какова вероятность того, что он будет без дефекта?

Выберите целесообразный вариант оформления и сверьтесь с образцом внизу страницы.

В простейших примерах количество общих и количество благоприятствующих исходов лежат на поверхности, но в большинстве случаев картошку приходится выкапывать самостоятельно. Каноничная серия задач о забывчивом абоненте:

Задача 3

Набирая номер телефона, абонент забыл две последние цифры, но помнит, что одна из них – ноль, а другая – нечётная. Найти вероятность того, что он наберёт правильный номер.

Примечание : ноль – это чётное число (делится на 2 без остатка)

Решение : сначала найдём общее количество исходов. По условию, абонент помнит, что одна из цифр – ноль, а другая цифра – нечётная. Здесь рациональнее не мудрить с комбинаторикой и воспользоваться методом прямого перечисления исходов . То есть, при оформлении решения просто записываем все комбинации:
01, 03, 05, 07, 09
10, 30, 50, 70, 90

И подсчитываем их – всего: 10 исходов.

Благоприятствующий исход один: верный номер.

По классическому определению:
– вероятность того, что абонент наберёт правильный номер

Ответ : 0,1

Десятичные дроби в теории вероятностей смотрятся вполне уместно, но можно придерживаться и традиционного вышматовского стиля, оперируя только обыкновенными дробями.

Продвинутая задача для самостоятельного решения:

Задача 4

Абонент забыл пин-код к своей сим-карте, однако помнит, что он содержит три «пятёрки», а одна из цифр – то ли «семёрка», то ли «восьмёрка». Какова вероятность успешной авторизации с первой попытки?

Здесь ещё можно развить мысль о вероятности того, что абонента ждёт кара в виде пук-кода, но, к сожалению, рассуждения уже выйдут за рамки данного урока

Решение и ответ внизу.

Иногда перечисление комбинаций оказывается весьма кропотливым занятием. В частности, так обстоят дела в следующей, не менее популярной группе задач, где подкидываются 2 игральных кубика (реже – бОльшее количество) :

Задача 5

Найти вероятность того, что при бросании двух игральных костей в сумме выпадет:

а) пять очков;
б) не более четырёх очков;
в) от 3 до 9 очков включительно.

Решение : найдём общее количество исходов:

Способами может выпасть грань 1-го кубика и способами может выпасть грань 2-го кубика; по правилу умножения комбинаций , всего: возможных комбинаций. Иными словами, каждая грань 1-го кубика может составить упорядоченную пару с каждой гранью 2-го кубика. Условимся записывать такую пару в виде , где – цифра, выпавшая на 1-м кубике, – цифра, выпавшая на 2-м кубике. Например:

– на первом кубике выпало 3 очка, на втором – 5 очков, сумма очков: 3 + 5 = 8;
– на первом кубике выпало 6 очков, на втором – 1 очко, сумма очков: 6 + 1 = 7;
– на обеих костях выпало 2 очка, сумма: 2 + 2 = 4.

Очевидно, что наименьшую сумму даёт пара , а наибольшую – две «шестёрки».

а) Рассмотрим событие: – при бросании двух игральных костей выпадет 5 очков. Запишем и подсчитаем количество исходов, которые благоприятствуют данному событию:

Итого: 4 благоприятствующих исхода. По классическому определению:
– искомая вероятность.

б) Рассмотрим событие: – выпадет не более 4 очков. То есть, либо 2, либо 3, либо 4 очка. Снова перечисляем и подсчитываем благоприятствующие комбинации, слева я буду записывать суммарное количество очков, а после двоеточия – подходящие пары:

Итого: 6 благоприятствующих комбинаций. Таким образом:
– вероятность того, что выпадет не более 4 очков.

в) Рассмотрим событие: – выпадет от 3 до 9 очков включительно. Здесь можно пойти прямой дорогой, но… что-то не хочется. Да, некоторые пары уже перечислены в предыдущих пунктах, но работы все равно предстоит многовато.

Как лучше поступить? В подобных случаях рациональным оказывается окольный путь. Рассмотрим противоположное событие : – выпадет 2 или 10 или 11 или 12 очков.

В чём смысл? Противоположному событию благоприятствует значительно меньшее количество пар:

Итого: 7 благоприятствующих исходов.

По классическому определению:
– вероятность того, что выпадет меньше трёх или больше 9 очков.

Помимо прямого перечисления и подсчёта исходов, в ходу также различные комбинаторные формулы . И снова эпичная задача про лифт:

Задача 7

В лифт 20-этажного дома на первом этаже зашли 3 человека. И поехали. Найти вероятность того, что:

а) они выйдут на разных этажах
б) двое выйдут на одном этаже;
в) все выйдут на одном этаже.

Наше увлекательное занятие подошло к концу, и напоследок ещё раз настоятельно рекомендую если не прорешать, то хотя бы разобраться в дополнительных задачах на классическое определение вероятности . Как я уже отмечал, «набивка руки» тоже имеет значение!

Далее по курсу – Геометрическое определение вероятности и Теоремы сложения и умножения вероятностей и… везения в главном!

Решения и ответы :

Задача 2: Решение : 30 – 5 = 25 холодильников не имеют дефекта.

– вероятность того, что наугад выбранный холодильник не имеет дефекта.
Ответ :

Задача 4: Решение : найдём общее число исходов:
способами можно выбрать место, на котором расположена сомнительная цифра и на каждом из этих 4 мест могут располагаться 2 цифры (семёрка или восьмёрка). По правилу умножения комбинаций, общее число исходов: .
Как вариант, в решении можно просто перечислить все исходы (благо их немного):
7555, 8555, 5755, 5855, 5575, 5585, 5557, 5558
Благоприятствующий исход один (правильный пин-код).
Таким образом, по классическому определению:
– вероятность того, что абонент авторизируется с 1-й попытки
Ответ :

Задача 6: Решение : найдём общее количество исходов:
способами могут выпасть цифры на 2 кубиках.

а) Рассмотрим событие: – при броске двух игральных костей произведение очков будет равно семи. Для данного события не существует благоприятствующих исходов, по классическому определению вероятности:
, т.е. это событие является невозможным.

б) Рассмотрим событие: – при броске двух игральных костей произведение очков окажется не менее 20. Данному событию благоприятствуют следующие исходы:

Итого: 8
По классическому определению:
– искомая вероятность.

в) Рассмотрим противоположные события:
– произведение очков будет чётным;
– произведение очков будет нечётным.
Перечислим все исходы, благоприятствующие событию :

Итого: 9 благоприятствующих исходов.
По классическому определению вероятности:
Противоположные события образуют полную группу, поэтому:
– искомая вероятность.

Ответ :

Задача 8: Решение : вычислим общее количество исходов: способами могут упасть 10 монет.
Другой путь: способами может упасть 1-я монета и способами может упасть 2-я монета и и способами может упасть 10-я монета. По правилу умножения комбинаций, 10 монет могут упасть способами.
а) Рассмотрим событие: – на всех монетах выпадет орёл. Данному событию благоприятствует единственный исход, по классическому определению вероятности: .
б) Рассмотрим событие: – на 9 монетах выпадет орёл, а на одной – решка.
Существует монет, на которых может выпасть решка. По классическому определению вероятности: .
в) Рассмотрим событие: – орёл выпадет на половине монет.
Существует уникальных комбинаций из пяти монет, на которых может выпасть орёл. По классическому определению вероятности:
Ответ :



Похожие статьи