Способы решения дифференциальных уравнений первого порядка. Линейные и однородные дифференциальные уравнения первого порядка

Или уже решены относительно производной , или их можно решить относительно производной .

Общее решение дифференциальных уравнений типа на интервале X , который задан, можно найти, взяв интеграл обоих частей этого равенства.

Получим .

Если посмотреть на свойства неопределенного интеграла, то найдем искомое общее решение:

y = F(x) + C ,

где F(x) - одна из первообразных функции f(x) на промежутке X , а С - произвольная постоянная.

Обратите внимание, что в большинстве задач интервал X не указывают. Это значит, что решение нужно находить для всех x , при которых и искомая функция y , и исходное уравнение имеют смысл.

Если нужно вычислить частное решение дифференциального уравнения , которое удовлетворяет начальному условию y(x 0) = y 0 , то после вычисления общего интеграла y = F(x) + C , еще необходимо определить значение постоянной C = C 0 , используя начальное условие. Т.е., константу C = C 0 определяют из уравнения F(x 0) + C = y 0 , и искомое частное решение дифференциального уравнения примет вид:

y = F(x) + C 0 .

Рассмотрим пример:

Найдем общее решение дифференциального уравнения , проверим правильность результата. Найдем частное решение этого уравнения, которое удовлетворяло бы начальному условию .

Решение:

После того, как мы проинтегрировали заданное дифференциальное уравнение, получаем:

.

Возьмем этот интеграл методом интегрирования по частям:


Т.о., является общим решением дифференциального уравнения.

Чтобы убедиться в правильности результата, сделаем проверку. Для этого подставляем решение, которое мы нашли, в заданное уравнение:


.

То есть, при исходное уравнение превращается в тождество:

поэтому общее решение дифференциального уравнения определили верно.

Решение, которое мы нашли, является общим решением дифференциального уравнения для каждого действительного значения аргумента x .

Осталось вычислить частное решение ОДУ, которое удовлетворяло бы начальному условию . Другими словами, необходимо вычислить значение константы С , при котором будет верно равенство:

.

.

Тогда, подставляя С = 2 в общее решение ОДУ, получаем частное решение дифференциального уравнения, которое удовлетворяет первоначальному условию:

.

Обыкновенное дифференциальное уравнение можно решить относительно производной, разделив 2 части равенства на f(x) . Это преобразование будет равнозначным, если f(x) не превращается в нуль ни при каких x из интервала интегрирования дифференциального уравнения X .

Вероятны ситуации, когда при некоторых значениях аргумента x X функции f(x) и g(x) одновременно превращаются в нуль. Для подобных значений x общим решением дифференциального уравнения будет всякая функция y , которая определена в них, т.к. .

Если для некоторых значений аргумента x X выполняется условие , значит, в этом случае у ОДУ решений нет.

Для всех других x из интервала X общее решение дифференциального уравнения определяется из преобразованного уравнения .

Разберем на примерах:

Пример 1.

Найдем общее решение ОДУ: .

Решение.

Из свойств основных элементарных функций ясно, что функция натурального логарифма определена для неотрицательных значений аргумента, поэтому областью определения выражения ln(x+3) есть интервал x > -3 . Значит, заданное дифференциальное уравнение имеет смысл для x > -3 . При этих значениях аргумента выражение x + 3 не обращается в нуль, поэтому можно решить ОДУ относительно производной, разделив 2 части на х + 3 .

Получаем .

Далее проинтегрируем полученное дифференциальное уравнение, решенное относительно производной: . Для взятия этого интеграла пользуемся методом подведения под знак дифференциала.

Вспомним задачу, которая стояла перед нами при нахождении определенных интегралов:

или dy = f(x)dx. Ее решение:

и сводится она к вычислению неопределенного интеграла. На практике чаще встречается более сложная задача: найти функцию y , если известно, что она удовлетворяет соотношению вида

Это соотношение связывает независимую переменную x , неизвестную функцию y и ее производные до порядка n включительно, называются .

В дифференциальное уравнение входит функция под знаком производных (или дифференциалов) того или иного порядка. Порядок наивысшей называется порядком (9.1).

Дифференциальные уравнения:

- первого порядка,

Второго порядка,

- пятого порядка и т. д.

Функция, которая удовлетворяет данному дифференциальному уравнению, называется его решением, или интегралом. Решить его - значит найти все его решения. Если для искомой функции y удалось получить формулу, которая дает все решения, то мы говорим, что нашли его общее решение, или общий интеграл.

Общее решение содержит n произвольных постоянных и имеет вид

Если получено соотношение, которое связывает x, y и n произвольных постоянных, в виде, не разрешенном относительно y -

то такое соотношение называется общим интегралом уравнения (9.1).

Задача Коши

Каждое конкретное решение, т. е. каждая конкретная функция, которая удовлетворяет данному дифференциальному уравнению и не зависит от произвольных постоянных, называется частным решением, или частным интегралом. Чтобы получить частные решения (интегралы) из общих, надо постоянным придают конкретные числовые значения.

График частного решения называется интегральной кривой. Общее решение, которое содержит все частные решения, представляет собой семейство интегральных кривых. Для уравнения первого порядка это семейство зависит от одной произвольной постоянной, для уравнения n -го порядка - от n произвольных постоянных.

Задача Коши заключается в нахождении частного решение для уравнения n -го порядка, удовлетворяющее n начальным условиям:

по которым определяются n постоянных с 1 , с 2 ,..., c n.

Дифференциальные уравнения 1-го порядка

Для неразрешенного относительно производной дифференциальное уравнения 1-го порядка имеет вид

или для разрешенного относительно

Пример 3.46 . Найти общее решение уравнения

Решение. Интегрируя, получим

где С - произвольная постоянная. Если придадим С конкретные числовые значения, то получим частные решения, например,

Пример 3.47 . Рассмотрим возрастающую денежную сумму, положенную в банк при условии начисления 100 r сложных процентов в год. Пусть Yo начальная денежная сумма, а Yx - по истечении x лет. При начислении процентов один раз в год,получим

где x = 0, 1, 2, 3,.... При начислении процентов два раза в год, получим

где x = 0, 1/2, 1, 3/2,.... При начислении процентов n раз в год и если x принимает последовательно значения 0, 1/n, 2/n, 3/n,..., тогда

Обозначить 1/n = h , тогда предыдущее равенство будет иметь вид:

При н еограниченном увеличении n (при ) в пределе приходем к процессу возрастания денежной суммы при непрерывном начислении процентов:

таким образом видно, что при непрерывном изменении x закон изменения денежной массы выражается дифференциальным уравнением 1- го порядка. Где Y x - неизвестная функция, x - независимая переменная, r - постоянная. Решим данное уравнение, для этого перепишем его следующим образом:

откуда , или , где через P обозначено e C .

Из начальных условий Y(0) = Yo , найдем P: Yo = Pe o , откуда, Yo = P. Следовательно, решение имеет вид:

Рассмотрим вторую экономическую задачу. Макроэкономические модели тоже описываются линейным дифференциальным уравнениям 1-го порядка, описывающим изменение дохода или выпуска продукции Y как функций времени.

Пример 3.48 . Пусть национальный доход Y возрастает со скоростью, пропорциональной его величине:

и пусть, дефицит в расходах правительства прямо пропорционален доходу Y с коэффициентом пропорциональности q . Дефицит в расходах приводит к возрастанию национального долга D:

Начальные условия Y = Yo и D = Do при t = 0. Из первого уравнения Y= Yoe kt . Подставляя Y получаем dD/dt = qYoe kt . Общее решение имеет вид
D = (q/ k) Yoe kt +С, где С = const, которая определяется из начальных условий. Подставляя начальные условия, получаем Do = (q/ k)Yo + С. Итак, окончательно,

D = Do +(q/ k)Yo (e kt -1),

отсюда видно, что национальный долг возрастает с той же относительной скоростью k , что и национальный доход.

Рассмотрим ростейшие дифференциальные уравнения n -го порядка, это уравнения вида

Его общее решение получитм с помощью n раз интегрирований.

Пример 3.49. Рассмотрим пример y """ = cos x.

Решение. Интегрируя, находим

Общее решение имеет вид

Линейные дифференциальные уравнения

В экономике большое применение имеют , рассмотрим решение таких уравнений. Если (9.1) имеет вид:

то оно называется линейным, где рo(x), р1(x),..., рn(x), f(x) - заданные функции. Если f(x) = 0, то (9.2) называется однородными, в противном случае - неоднородным. Общее решение уравнения (9.2) равно сумме какого-либо его частного решения y(x) и общего решения однородного уравнения соответствующего ему:

Если коэффициенты р o (x), р 1 (x),..., р n (x) постоянные, то (9.2)

(9.4) называется линейным дифференциальным уравнением с постоянными коэффициентами порядка n .

Для (9.4) имеет вид:

Можно положить без ограничения общности р o = 1 и записать (9.5) в виде

Будем искать решение (9.6) в виде y = e kx , где k - константа. Имеем: ; y " = ke kx , y "" = k 2 e kx , ..., y (n) = kne kx . Подставим полученные выражения в (9.6), будем иметь:

(9.7) есть алгебраическое уравнение, его неизвестным является k , оно называется характеристическим. Характеристическое уравнение имеет степень n и n корней, среди которых могут быть как кратные, так и комплексные. Пусть k 1 , k 2 ,..., k n - действительные и различные, тогда - частные решения (9.7), а общее

Рассмотрим линейное однородное дифференциальное уравнение второго порядка с постоянными коэффициентами:

Его характеристическое уравнение имеет вид

(9.9)

его дискриминант D = р 2 - 4q в зависимости от знака D возможны три случая.

1. Если D>0, то корни k 1 и k 2 (9.9) действительны и различны, и общее решение имеет вид:

Решение. Характеристическое уравнение: k 2 + 9 = 0, откуда k = ± 3i, a = 0, b = 3, общее решение имеет вид:

y = C 1 cos 3x + C 2 sin 3x.

Линейные дифференциальные уравнения 2-го порядка применяются при изучении экономической модели паутинообразного типа с запасами товаров, где скорость изменения цены P зависит от величины запаса (см. параграф 10). В случае если спрос и предложение являются линейными функциями цены, то есть

а - есть постоянная, определяющая скорость реакции, то процесс изменения цены описывается дифференциальным уравнением:

За частное решения можно взять постоянную

имеющую смысл цены равновесия. Отклонение удовлетворяет однородному уравнению

(9.10)

Характеристическое уравнение будет следующее:

В случае член положителен. Обозначим . Корни характеристического уравнения k 1,2 = ± i w, поэтому общее решение (9.10) имеет вид:

где C и произвольные постоянные, они определяются из начальных условий. Получили закон изменения цены во времени:

Введите свое дифференциальное уравнение, для ввода производной используется апостроa """, нажмите submit получите решение

Дифференциальные уравнения (ДУ). Эти два слова обычно приводят в ужас среднестатистического обывателя. Дифференциальные уравнения кажутся чем-то запредельным и трудным в освоении и многим студентам. Уууууу… дифференциальные уравнения, как бы мне всё это пережить?!

Такое мнение и такой настрой в корне неверен, потому-что на самом делеДИФФЕРЕНЦИАЛЬНЫЕ УРАВНЕНИЯ – ЭТО ПРОСТО И ДАЖЕ УВЛЕКАТЕЛЬНО . Что нужно знать и уметь, для того чтобы научиться решать дифференциальные уравнения? Для успешного изучения диффуров вы должны хорошо уметь интегрировать и дифференцировать. Чем качественнее изучены темы Производная функции одной переменной иНеопределенный интеграл , тем будет легче разобраться в дифференциальных уравнениях. Скажу больше, если у вас более или менее приличные навыки интегрирования, то тема практически освоена! Чем больше интегралов различных типов вы умеете решать – тем лучше. Почему? Потому что придется много интегрировать. И дифференцировать. Такженастоятельно рекомендую научиться находить производную от функции, заданной неявно .

В 95% случаев в контрольных работах встречаются 3 типа дифференциальных уравнений первого порядка: уравнения с разделяющимися переменными, которые мы рассмотрим на этом уроке; однородные уравнения и линейные неоднородные уравнения . Начинающим изучать диффуры советую ознакомиться с уроками именно в таком порядке. Есть еще более редкие типы дифференциальных уравнений: уравнения в полных дифференциалах , уравнения Бернулли и некоторые другие. Наиболее важными из двух последних видов являются уравнения в полных дифференциалах, поскольку помимо данного ДУ я рассматриваю новый материал – частное интегрирование.

Сначала вспомним обычные уравнения. Они содержат переменные и числа. Простейший пример: . Что значит решить обычное уравнение? Это значит, найти множество чисел , которые удовлетворяют данному уравнению. Легко заметить, что детское уравнение имеет единственный корень: . Для прикола сделаем проверку, подставим найденный корень в наше уравнение:

– получено верное равенство, значит, решение найдено правильно.

Диффуры устроены примерно так же!

Дифференциальное уравнение первого порядка , содержит :
1) независимую переменную ;
2) зависимую переменную (функцию);
3) первую производную функции: .

В некоторых случаях в уравнении первого порядка может отсутствовать «икс» или (и) «игрек» – важно чтобы в ДУ была первая производная , и не было производных высших порядков – , и т.д.

Что значит ? Решить дифференциальное уравнение – это значит, найти множество функций , которые удовлетворяют данному уравнению. Такое множество функций называется общим решением дифференциального уравнения .

Пример 1

Решить дифференциальное уравнение

Полный боекомплект. С чего начать решение любого дифференциального уравнения первого порядка?

В первую очередь нужно переписать производную немного в другом виде. Вспоминаем громоздкое обозначение производной: . Такое обозначение производной многим из вас наверняка казалось нелепым и ненужным, но в диффурах рулит именно оно!

Итак, на первом этапе переписываем производную в нужном нам виде:

На втором этапе всегда смотрим, нельзя ли разделить переменные? Что значит разделить переменные? Грубо говоря, в левой части нам нужно оставить только «игреки» , а в правой части организовать только «иксы» . Разделение переменных выполняется с помощью «школьных» манипуляций: вынесение за скобки, перенос слагаемых из части в часть со сменой знака, перенос множителей из части в часть по правилу пропорции и т.п.

Дифференциалы и – это полноправные множители и активные участники боевых действий. В рассматриваемом примере переменные легко разделяются перекидыванием множителей по правилу пропорции:

Переменные разделены. В левой части – только «игреки», в правой части – только «иксы».

Следующий этап – интегрирование дифференциального уравнения . Всё просто, навешиваем интегралы на обе части:

Разумеется, интегралы нужно взять. В данном случае они табличные:

Как мы помним, к любой первообразной приписывается константа. Здесь два интеграла, но константу достаточно записать один раз. Почти всегда её приписывают в правой части.

Строго говоря, после того, как взяты интегралы, дифференциальное уравнение считается решенным. Единственное, у нас «игрек» не выражен через «икс», то есть решение представлено в неявном виде. Решение дифференциального уравнения в неявном виде называется общим интегралом дифференциального уравнения . То есть, – это общий интеграл.

Теперь нужно попробовать найти общее решение, то есть попытаться представить функцию в явном виде.

Пожалуйста, запомните первый технический приём, он очень распространен и часто применяется в практических заданиях. Когда в правой части после интегрирования появляется логарифм, то константу почти всегда целесообразно записать тоже под логарифмом.

То есть, вместо записи обычно пишут .

Здесь – это такая же полноценная константа, как и . Зачем это нужно? А для того, чтобы легче было выразить «игрек». Используем школьное свойство логарифмов: . В данном случае:

Теперь логарифмы и модули можно с чистой совестью убрать с обеих частей:

Функция представлена в явном виде. Это и есть общее решение.

Множество функций является общим решением дифференциального уравнения .

Придавая константе различные значения, можно получить бесконечно много частных решений дифференциального уравнения. Любая из функций , , и т.д. будет удовлетворять дифференциальному уравнению .

Иногда общее решение называют семейством функций . В данном примере общее решение – это семейство линейных функций, а точнее, семейство прямых пропорциональностей.

Многие дифференциальные уравнения довольно легко проверить. Делается это очень просто, берём найденное решение и находим производную:

Подставляем наше решение и найденную производную в исходное уравнение :

– получено верное равенство, значит, решение найдено правильно. Иными словами, общее решение удовлетворяет уравнению .

После обстоятельного разжевывания первого примера уместно ответить на несколько наивных вопросов о дифференциальных уравнениях.

1) В этом примере нам удалось разделить переменные: . Всегда ли это можно сделать? Нет, не всегда. И даже чаще переменные разделить нельзя. Например, воднородных уравнениях первого порядка , необходимо сначала провести замену. В других типах уравнений, например, в линейном неоднородном уравнении первого порядка , нужно использовать различные приёмы и методы для нахождения общего решения. Уравнения с разделяющимися переменными, которые мы рассматриваем на первом уроке – простейший тип дифференциальных уравнений.

2) Всегда ли можно проинтегрировать дифференциальное уравнение? Нет, не всегда. Очень легко придумать «навороченное» уравнение, которое не проинтегрировать, кроме того, существуют неберущиеся интегралы. Но подобные ДУ можно решить приближенно с помощью специальных методов. Даламбер и Коши гарантируют. …тьфу, lurkmore.ru давеча начитался.

3) В данном примере мы получили решение в виде общего интеграла . Всегда ли можно из общего интеграла найти общее решение, то есть, выразить «игрек» в явном виде? Нет не всегда. Например: . Ну и как тут выразить «игрек»?! В таких случаях ответ следует записать в виде общего интеграла. Кроме того, иногда общее решение найти можно, но оно записывается настолько громоздко и коряво, что уж лучше оставить ответ в виде общего интеграла

Торопиться не будем. Еще одно простое ДУ и еще один типовой приём решения.

Пример 2

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию

По условию требуется найти частное решение ДУ, удовлетворяющее начальному условию. Такая постановка вопроса также называется задачей Коши .

Сначала находим общее решение. В уравнении нет переменной «икс», но это не должно смущать, главное, в нём есть первая производная.

Переписываем производную в нужном виде:

Очевидно, что переменные можно разделить, мальчики – налево, девочки – направо:

Интегрируем уравнение:

Общий интеграл получен. Здесь константу я нарисовал с надстрочной звездочкой, дело в том, что очень скоро она превратится в другую константу.

Теперь пробуем общий интеграл преобразовать в общее решение (выразить «игрек» в явном виде). Вспоминаем старое, доброе, школьное: . В данном случае:

Константа в показателе смотрится как-то некошерно, поэтому её обычно спускают с небес на землю. Если подробно, то происходит это так. Используя свойство степеней, перепишем функцию следующим образом:

Если – это константа, то – тоже некоторая константа, которую обозначим через букву :

Запомните «снос» константы, это второй технический приём, который часто используют в ходе решения дифференциальных уравнений.

Итак, общее решение: . Такое вот симпатичное семейство экспоненциальных функций.

На завершающем этапе нужно найти частное решение, удовлетворяющее заданному начальному условию . Это тоже просто.

В чём состоит задача? Необходимо подобрать такое значение константы , чтобы выполнялось заданное начальное условие .

Оформить можно по-разному, но понятнее всего, пожалуй, будет так. В общее решение вместо «икса» подставляем ноль, а вместо «игрека» двойку:



То есть,

Стандартная версия оформления:

В общее решение подставляем найденное значение константы :
– это и есть нужное нам частное решение.

Выполним проверку. Проверка частного решение включает в себя два этапа.

Сначала необходимо проверить, а действительно ли найденное частное решение удовлетворяет начальному условию ? Вместо «икса» подставляем ноль и смотрим, что получится:
– да, действительно получена двойка, значит, начальное условие выполняется.

Второй этап уже знаком. Берём полученное частное решение и находим производную:

Подставляем и в исходное уравнение :


– получено верное равенство.

Вывод: частное решение найдено правильно.

Переходим к более содержательным примерам.

Пример 3

Решить дифференциальное уравнение

Решение: Переписываем производную в нужном нам виде:

Оцениваем, можно ли разделить переменные? Можно. Переносим второе слагаемое в правую часть со сменой знака:

И перекидываем множители по правилу пропорции:

Переменные разделены, интегрируем обе части:

Должен предупредить, приближается судный день. Если вы плохо изучили неопределенные интегралы , прорешали мало примеров, то деваться некуда – придется их осваивать сейчас.

Интеграл левой части легко найти , с интегралом от котангенса расправляемся стандартным приемом, который мы рассматривали на уроке Интегрирование тригонометрических функций в прошлом году:


В правой части у нас получился логарифм, согласно моей первой технической рекомендации, в этом случае константу тоже следует записать под логарифмом.

Теперь пробуем упростить общий интеграл. Поскольку у нас одни логарифмы, то от них вполне можно (и нужно) избавиться. Максимально «упаковываем» логарифмы. Упаковка проводится с помощью трёх свойств:


Пожалуйста, перепишите эти три формулы к себе в рабочую тетрадь, при решении диффуров они применяются очень часто.

Решение распишу очень подробно:


Упаковка завершена, убираем логарифмы:

Можно ли выразить «игрек»? Можно. Надо возвести в квадрат обе части. Но делать этого не нужно.

Третий технический совет: Если для получения общего решения нужно возводить в степень или извлекать корни, то в большинстве случаев следует воздержаться от этих действий и оставить ответ в виде общего интеграла. Дело в том, что общее решение будет смотреться вычурно и ужасно – с большими корнями, знаками .

Поэтому ответ запишем в виде общего интеграла. Хорошим тоном считается представить общий интеграл в виде , то есть, в правой части, по возможности, оставить только константу. Делать это не обязательно, но всегда же выгодно порадовать профессора;-)

Ответ: общий интеграл:

Примечание: общий интеграл любого уравнения можно записать не единственным способом. Таким образом, если у вас не совпал результат с заранее известным ответом, то это еще не значит, что вы неправильно решили уравнение.

Общий интеграл тоже проверяется довольно легко, главное, уметь находить производные от функции, заданной неявно . Дифференцируем ответ:

Умножаем оба слагаемых на :

И делим на :

Получено в точности исходное дифференциальное уравнение , значит, общий интеграл найден правильно.

Пример 4

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Это пример для самостоятельного решения. Напоминаю, что задача Коши состоит из двух этапов:
1) Нахождение общего решение.
2) Нахождение частного решения.

Проверка тоже проводится в два этапа (см. также образец Примера 2), нужно:
1) Убедиться, что найденное частное решение действительно удовлетворяет начальному условию.
2) Проверить, что частное решение вообще удовлетворяет дифференциальному уравнению.

Полное решение и ответ в конце урока.

Пример 5

Найти частное решение дифференциального уравнения , удовлетворяющее начальному условию . Выполнить проверку.

Решение: Сначала найдем общее решение.Данное уравнение уже содержит готовые дифференциалы и , а значит, решение упрощается. Разделяем переменные:

Интегрируем уравнение:

Интеграл слева – табличный, интеграл справа – берем методом подведения функции под знак дифференциала :

Общий интеграл получен, нельзя ли удачно выразить общее решение? Можно. Навешиваем логарифмы:

(Надеюсь, всем понятно преобразование , такие вещи надо бы уже знать)

Итак, общее решение:

Найдем частное решение, соответствующее заданному начальному условию . В общее решение вместо «икса» подставляем ноль, а вместо «игрека» логарифм двух:

Более привычное оформление:

Подставляем найденное значение константы в общее решение.

Ответ: частное решение:

Проверка: Сначала проверим, выполнено ли начальное условие :
– всё гуд.

Теперь проверим, а удовлетворяет ли вообще найденное частное решение дифференциальному уравнению. Находим производную:

Смотрим на исходное уравнение: – оно представлено в дифференциалах. Есть два способа проверки. Можно из найденной производной выразить дифференциал :

Подставим найденное частное решение и полученный дифференциал в исходное уравнение :

Используем основное логарифмическое тождество :

Получено верное равенство, значит, частное решение найдено правильно.

Второй способ проверки зеркален и более привычен: из уравнения выразим производную, для этого разделим все штуки на :

И в преобразованное ДУ подставим полученное частное решение и найденную производную . В результате упрощений тоже должно получиться верное равенство.

Пример 6

Решить дифференциальное уравнение . Ответ представить в виде общего интеграла .

Это пример для самостоятельного решения, полное решение и ответ в конце урока.

Какие трудности подстерегают при решении дифференциальных уравнений с разделяющимися переменными?

1) Не всегда очевидно (особенно, чайнику), что переменные можно разделить. Рассмотрим условный пример: . Здесь нужно провести вынесение множителей за скобки: и отделить корни: . Как действовать дальше – понятно.

2) Сложности при самом интегрировании. Интегралы нередко возникают не самые простые, и если есть изъяны в навыках нахождения неопределенного интеграла , то со многими диффурами придется туго. К тому же у составителей сборников и методичек популярна логика «раз уж дифференциальное уравнение является простым, то пусть интегралы будут посложнее».

3) Преобразования с константой. Как все заметили, с константой в дифференциальных уравнениях можно делать практически всё, что угодно. И не всегда такие преобразования понятны новичку. Рассмотрим еще один условный пример: . В нём целесообразно умножить все слагаемые на 2: . Полученная константа – это тоже какая-то константа, которую можно обозначить через : . Да, и коль скоро в правой части логарифм, то константу целесообразно переписать в виде другой константы: .

Беда же состоит в том, что частенько не заморачиваются с индексами, и используют одну и ту же букву . И в результате запись решения принимает следующий вид:

Что за фигня? Тут же ошибки. Формально – да. А неформально – ошибки нет, подразумевается, что при преобразовании константы всё равно получается какая-то другая константа .

Или такой пример, предположим, что в ходе решения уравнения получен общий интеграл . Такой ответ выглядит некрасиво, поэтому целесообразно сменить у всех множителей знаки: . Формально по записи тут опять ошибка, следовало бы записать . Но неформально подразумевается, что – это всё равно какая-то другая константа (тем более может принимать любое значение), поэтому смена у константы знака не имеет никакого смысла и можно использовать одну и ту же букву .

Я буду стараться избегать небрежного подхода, и всё-таки проставлять у констант разные индексы при их преобразовании.

Пример 7

Решить дифференциальное уравнение . Выполнить проверку.

Решение: Данное уравнение допускает разделение переменных. Разделяем переменные:

Интегрируем:

Константу тут не обязательно определять под логарифм, поскольку ничего путного из этого не получится.

Ответ: общий интеграл:

Проверка: Дифференцируем ответ (неявную функцию):

Избавляемся от дробей, для этого умножаем оба слагаемых на :

Получено исходное дифференциальное уравнение, значит, общий интеграл найден правильно.

Пример 8

Найти частное решение ДУ.
,

Это пример для самостоятельного решения. Единственный комментарий, здесь получится общий интеграл, и, правильнее говоря, нужно исхитриться найти не частное решение, ачастный интеграл . Полное решение и ответ в конце урока.

Как уже отмечалось, в диффурах с разделяющимися переменными нередко вырисовываются не самые простые интегралы. И вот еще парочка таких примеров для самостоятельного решения. Рекомендую всем прорешать примеры №№9-10, независимо от уровня подготовки, это позволит актуализировать навыки нахождения интегралов или восполнить пробелы в знаниях.

Пример 9

Решить дифференциальное уравнение

Пример 10

Решить дифференциальное уравнение

Помните, что общий интеграл можно записать не единственным способом, и внешний вид ваших ответов может отличаться от внешнего вида моих ответов. Краткий ход решения и ответы в конце урока.

Успешного продвижения!

Пример 4: Решение: Найдем общее решение. Разделяем переменные:


Интегрируем:



Общий интеграл получен, пытаемся его упростить. Упаковываем логарифмы и избавляемся от них:

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

Дифференциальное уравнение - это уравнение, в которое входят функция и одна или несколько ее производных. В большинстве практических задач функции представляют собой физические величины, производные соответствуют скоростям изменения этих величин, а уравнение определяет связь между ними.


В данной статье рассмотрены методы решения некоторых типов обыкновенных дифференциальных уравнений, решения которых могут быть записаны в виде элементарных функций , то есть полиномиальных, экспоненциальных, логарифмических и тригонометрических, а также обратных им функций. Многие из этих уравнений встречаются в реальной жизни, хотя большинство других дифференциальных уравнений нельзя решить данными методами, и для них ответ записывается в виде специальных функций или степенных рядов, либо находится численными методами.


Для понимания данной статьи необходимо владеть дифференциальным и интегральным исчислением, а также иметь некоторое представление о частных производных. Рекомендуется также знать основы линейной алгебры в применении к дифференциальным уравнениям, особенно к дифференциальным уравнениям второго порядка, хотя для их решения достаточно знания дифференциального и интегрального исчисления.

Предварительные сведения

  • Дифференциальные уравнения имеют обширную классификацию. В настоящей статье рассказывается об обыкновенных дифференциальных уравнениях , то есть об уравнениях, в которые входит функция одной переменной и ее производные. Обыкновенные дифференциальные уравнения намного легче понять и решить, чем дифференциальные уравнения в частных производных , в которые входят функции нескольких переменных. В данной статье не рассматриваются дифференциальные уравнения в частных производных, поскольку методы решения этих уравнений обычно определяются их конкретным видом.
    • Ниже приведены несколько примеров обыкновенных дифференциальных уравнений.
      • d y d x = k y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=ky}
      • d 2 x d t 2 + k x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+kx=0}
    • Ниже приведены несколько примеров дифференциальных уравнений в частных производных.
      • ∂ 2 f ∂ x 2 + ∂ 2 f ∂ y 2 = 0 {\displaystyle {\frac {\partial ^{2}f}{\partial x^{2}}}+{\frac {\partial ^{2}f}{\partial y^{2}}}=0}
      • ∂ u ∂ t − α ∂ 2 u ∂ x 2 = 0 {\displaystyle {\frac {\partial u}{\partial t}}-\alpha {\frac {\partial ^{2}u}{\partial x^{2}}}=0}
  • Порядок дифференциального уравнения определяется по порядку старшей производной, входящей в данное уравнение. Первое из приведенных выше обыкновенных дифференциальных уравнений имеет первый порядок, в то время как второе относится к уравнениям второго порядка. Степенью дифференциального уравнения называется наивысшая степень, в которую возводится один из членов этого уравнения.
    • Например, приведенное ниже уравнение имеет третий порядок и вторую степень.
      • (d 3 y d x 3) 2 + d y d x = 0 {\displaystyle \left({\frac {{\mathrm {d} }^{3}y}{{\mathrm {d} }x^{3}}}\right)^{2}+{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
  • Дифференциальное уравнение является линейным дифференциальным уравнением в том случае, если функция и все ее производные стоят в первой степени. В противном случае уравнение является нелинейным дифференциальным уравнением . Линейные дифференциальные уравнения примечательны тем, что из их решений можно составить линейные комбинации, которые также будут решениями данного уравнения.
    • Ниже приведены несколько примеров линейных дифференциальных уравнений.
    • Ниже приведены несколько примеров нелинейных дифференциальных уравнений. Первое уравнение является нелинейным из-за слагаемого с синусом.
      • d 2 θ d t 2 + g l sin ⁡ θ = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}\theta }{{\mathrm {d} }t^{2}}}+{\frac {g}{l}}\sin \theta =0}
      • d 2 x d t 2 + (d x d t) 2 + t x 2 = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+\left({\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}\right)^{2}+tx^{2}=0}
  • Общее решение обыкновенного дифференциального уравнения не является единственным, оно включает в себя произвольные постоянные интегрирования . В большинстве случаев число произвольных постоянных равно порядку уравнения. На практике значения этих констант определяются по заданным начальным условиям , то есть по значениям функции и ее производных при x = 0. {\displaystyle x=0.} Число начальных условий, которые необходимы для нахождения частного решения дифференциального уравнения, в большинстве случаев также равно порядку данного уравнения.
    • Например, в данной статье будет рассмотрено решение приведенного ниже уравнения. Это линейное дифференциальное уравнение второго порядка. Его общее решение содержит две произвольные постоянные. Для нахождения этих постоянных необходимо знать начальные условия при x (0) {\displaystyle x(0)} и x ′ (0) . {\displaystyle x"(0).} Обычно начальные условия задаются в точке x = 0 , {\displaystyle x=0,} , хотя это и не обязательно. В данной статье будет рассмотрено также, как найти частные решения при заданных начальных условиях.
      • d 2 x d t 2 + k 2 x = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+k^{2}x=0}
      • x (t) = c 1 cos ⁡ k x + c 2 sin ⁡ k x {\displaystyle x(t)=c_{1}\cos kx+c_{2}\sin kx}

Шаги

Часть 1

Уравнения первого порядка

При использовании этого сервиса некоторая информация может быть передана YouTube.

  1. Линейные уравнения первого порядка. В данном разделе рассмотрены методы решения линейных дифференциальных уравнений первого порядка в общих и специальных случаях, когда некоторые члены равны нулю. Предположим, что y = y (x) , {\displaystyle y=y(x),} p (x) {\displaystyle p(x)} и q (x) {\displaystyle q(x)} являются функциями x . {\displaystyle x.}

    D y d x + p (x) y = q (x) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+p(x)y=q(x)}

    P (x) = 0. {\displaystyle p(x)=0.} Согласно одной из основных теорем математического анализа, интеграл от производной функции также является функцией. Таким образом, достаточно просто проинтегрировать уравнение, чтобы найти его решение. При этом следует учесть, что при вычислении неопределенного интеграла появляется произвольная постоянная.

    • y (x) = ∫ q (x) d x {\displaystyle y(x)=\int q(x){\mathrm {d} }x}

    Q (x) = 0. {\displaystyle q(x)=0.} Используем метод разделения переменных . При этом различные переменные переносятся в разные стороны уравнения. Например, можно перенести все члены с y {\displaystyle y} в одну, а все члены с x {\displaystyle x} в другую сторону уравнения. Можно переносить также члены d x {\displaystyle {\mathrm {d} }x} и d y {\displaystyle {\mathrm {d} }y} , которые входят в выражения производных, однако следует помнить, что это всего лишь условное обозначение, которое удобно при дифференцировании сложной функции. Обсуждение этих членов, которые называются дифференциалами , выходит за рамки данной статьи.

    • Во-первых, необходимо перенести переменные по разные стороны знака равенства.
      • 1 y d y = − p (x) d x {\displaystyle {\frac {1}{y}}{\mathrm {d} }y=-p(x){\mathrm {d} }x}
    • Проинтегрируем обе стороны уравнения. После интегрирования с обеих сторон появятся произвольные постоянные, которые можно перенести в правую часть уравнения.
      • ln ⁡ y = ∫ − p (x) d x {\displaystyle \ln y=\int -p(x){\mathrm {d} }x}
      • y (x) = e − ∫ p (x) d x {\displaystyle y(x)=e^{-\int p(x){\mathrm {d} }x}}
    • Пример 1.1. На последнем шаге мы использовали правило e a + b = e a e b {\displaystyle e^{a+b}=e^{a}e^{b}} и заменили e C {\displaystyle e^{C}} на C {\displaystyle C} , поскольку это также произвольная постоянная интегрирования.
      • d y d x − 2 y sin ⁡ x = 0 {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}-2y\sin x=0}
      • 1 2 y d y = sin ⁡ x d x 1 2 ln ⁡ y = − cos ⁡ x + C ln ⁡ y = − 2 cos ⁡ x + C y (x) = C e − 2 cos ⁡ x {\displaystyle {\begin{aligned}{\frac {1}{2y}}{\mathrm {d} }y&=\sin x{\mathrm {d} }x\\{\frac {1}{2}}\ln y&=-\cos x+C\\\ln y&=-2\cos x+C\\y(x)&=Ce^{-2\cos x}\end{aligned}}}

    P (x) ≠ 0 , q (x) ≠ 0. {\displaystyle p(x)\neq 0,\ q(x)\neq 0.} Для нахождения общего решения мы ввели интегрирующий множитель в виде функции от x {\displaystyle x} , чтобы свести левую часть к общей производной и таким образом решить уравнение.

    • Умножим обе стороны на μ (x) {\displaystyle \mu (x)}
      • μ d y d x + μ p y = μ q {\displaystyle \mu {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+\mu py=\mu q}
    • Чтобы свести левую часть к общей производной, необходимо сделать следующие преобразования:
      • d d x (μ y) = d μ d x y + μ d y d x = μ d y d x + μ p y {\displaystyle {\frac {\mathrm {d} }{{\mathrm {d} }x}}(\mu y)={\frac {{\mathrm {d} }\mu }{{\mathrm {d} }x}}y+\mu {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=\mu {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+\mu py}
    • Последнее равенство означает, что d μ d x = μ p {\displaystyle {\frac {{\mathrm {d} }\mu }{{\mathrm {d} }x}}=\mu p} . Это интегрирующий множитель, которого достаточно для решения любого линейного уравнения первого порядка. Теперь можно вывести формулу решения данного уравнения относительно μ , {\displaystyle \mu ,} хотя для тренировки полезно проделать все промежуточные вычисления.
      • μ (x) = e ∫ p (x) d x {\displaystyle \mu (x)=e^{\int p(x){\mathrm {d} }x}}
    • Пример 1.2. В данном примере рассмотрено, как найти частное решение дифференциального уравнения с заданными начальными условиями.
      • t d y d t + 2 y = t 2 , y (2) = 3 {\displaystyle t{\frac {{\mathrm {d} }y}{{\mathrm {d} }t}}+2y=t^{2},\quad y(2)=3}
      • d y d t + 2 t y = t {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }t}}+{\frac {2}{t}}y=t}
      • μ (x) = e ∫ p (t) d t = e 2 ln ⁡ t = t 2 {\displaystyle \mu (x)=e^{\int p(t){\mathrm {d} }t}=e^{2\ln t}=t^{2}}
      • d d t (t 2 y) = t 3 t 2 y = 1 4 t 4 + C y (t) = 1 4 t 2 + C t 2 {\displaystyle {\begin{aligned}{\frac {\mathrm {d} }{{\mathrm {d} }t}}(t^{2}y)&=t^{3}\\t^{2}y&={\frac {1}{4}}t^{4}+C\\y(t)&={\frac {1}{4}}t^{2}+{\frac {C}{t^{2}}}\end{aligned}}}
      • 3 = y (2) = 1 + C 4 , C = 8 {\displaystyle 3=y(2)=1+{\frac {C}{4}},\quad C=8}
      • y (t) = 1 4 t 2 + 8 t 2 {\displaystyle y(t)={\frac {1}{4}}t^{2}+{\frac {8}{t^{2}}}}


    Решение линейных уравнений первого порядка (запись Интуита – национального открытого университета).
  2. Нелинейные уравнения первого порядка . В данном разделе рассмотрены методы решения некоторых нелинейных дифференциальных уравнений первого порядка. Хотя и не существует общего метода решения таких уравнений, некоторые из них можно решить с помощью приведенных ниже методов.

    D y d x = f (x , y) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=f(x,y)}
    d y d x = h (x) g (y) . {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=h(x)g(y).} Если функцию f (x , y) = h (x) g (y) {\displaystyle f(x,y)=h(x)g(y)} можно разделить на функции одной переменной, такое уравнение называется дифференциальным уравнением с разделяющимися переменными . В этом случае можно воспользоваться приведенным выше методом:

    • ∫ d y h (y) = ∫ g (x) d x {\displaystyle \int {\frac {{\mathrm {d} }y}{h(y)}}=\int g(x){\mathrm {d} }x}
    • Пример 1.3.
      • d y d x = x 3 y (1 + x 4) {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}={\frac {x^{3}}{y(1+x^{4})}}}
      • ∫ y d y = ∫ x 3 1 + x 4 d x 1 2 y 2 = 1 4 ln ⁡ (1 + x 4) + C y (x) = 1 2 ln ⁡ (1 + x 4) + C {\displaystyle {\begin{aligned}\int y{\mathrm {d} }y&=\int {\frac {x^{3}}{1+x^{4}}}{\mathrm {d} }x\\{\frac {1}{2}}y^{2}&={\frac {1}{4}}\ln(1+x^{4})+C\\y(x)&={\frac {1}{2}}\ln(1+x^{4})+C\end{aligned}}}

    D y d x = g (x , y) h (x , y) . {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}={\frac {g(x,y)}{h(x,y)}}.} Предположим, что g (x , y) {\displaystyle g(x,y)} и h (x , y) {\displaystyle h(x,y)} являются функциями x {\displaystyle x} и y . {\displaystyle y.} Тогда однородным дифференциальным уравнением называется такое уравнение, в котором g {\displaystyle g} и h {\displaystyle h} являются однородными функциями одинаковой степени. То есть функции должны удовлетворять условию g (α x , α y) = α k g (x , y) , {\displaystyle g(\alpha x,\alpha y)=\alpha ^{k}g(x,y),} где k {\displaystyle k} называется степенью однородности. Любое однородное дифференциальное уравнение можно путем подходящей замены переменных ( v = y / x {\displaystyle v=y/x} или v = x / y {\displaystyle v=x/y} ) преобразовать в уравнение с разделяющимися переменными.

    • Пример 1.4. Приведенное выше описание однородности может показаться неясным. Рассмотрим это понятие на примере.
      • d y d x = y 3 − x 3 y 2 x {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}={\frac {y^{3}-x^{3}}{y^{2}x}}}
      • Для начала следует отметить, что это уравнение нелинейно относительно y . {\displaystyle y.} Также мы видим, что в данном случае нельзя разделить переменные. Вместе с тем это дифференциальное уравнение является однородным, поскольку и числитель, и знаменатель однородны со степенью 3. Следовательно, мы можем произвести замену переменных v = y / x . {\displaystyle v=y/x.}
      • d y d x = y x − x 2 y 2 = v − 1 v 2 {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}={\frac {y}{x}}-{\frac {x^{2}}{y^{2}}}=v-{\frac {1}{v^{2}}}}
      • y = v x , d y d x = d v d x x + v {\displaystyle y=vx,\quad {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}={\frac {{\mathrm {d} }v}{{\mathrm {d} }x}}x+v}
      • d v d x x = − 1 v 2 . {\displaystyle {\frac {{\mathrm {d} }v}{{\mathrm {d} }x}}x=-{\frac {1}{v^{2}}}.} В результате мы имеем уравнение для v {\displaystyle v} с разделяющимися переменными.
      • v (x) = − 3 ln ⁡ x + C 3 {\displaystyle v(x)={\sqrt[{3}]{-3\ln x+C}}}
      • y (x) = x − 3 ln ⁡ x + C 3 {\displaystyle y(x)=x{\sqrt[{3}]{-3\ln x+C}}}

    D y d x = p (x) y + q (x) y n . {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=p(x)y+q(x)y^{n}.} Это дифференциальное уравнение Бернулли - особый вид нелинейного уравнения первой степени, решение которого может быть записано с помощью элементарных функций.

    • Умножим обе стороны уравнения на (1 − n) y − n {\displaystyle (1-n)y^{-n}} :
      • (1 − n) y − n d y d x = p (x) (1 − n) y 1 − n + (1 − n) q (x) {\displaystyle (1-n)y^{-n}{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=p(x)(1-n)y^{1-n}+(1-n)q(x)}
    • Используем с левой стороны правило дифференцирования сложной функции и преобразуем уравнение в линейное уравнение относительно y 1 − n , {\displaystyle y^{1-n},} которое можно решить приведенными выше методами.
      • d y 1 − n d x = p (x) (1 − n) y 1 − n + (1 − n) q (x) {\displaystyle {\frac {{\mathrm {d} }y^{1-n}}{{\mathrm {d} }x}}=p(x)(1-n)y^{1-n}+(1-n)q(x)}

    M (x , y) + N (x , y) d y d x = 0. {\displaystyle M(x,y)+N(x,y){\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0.} Это уравнение в полных дифференциалах . Необходимо найти так называемую потенциальную функцию φ (x , y) , {\displaystyle \varphi (x,y),} , которая удовлетворяет условию d φ d x = 0. {\displaystyle {\frac {{\mathrm {d} }\varphi }{{\mathrm {d} }x}}=0.}

    • Для выполнения данного условия необходимо наличие полной производной . Полная производная учитывает зависимость от других переменных. Чтобы вычислить полную производную φ {\displaystyle \varphi } по x , {\displaystyle x,} мы предполагаем, что y {\displaystyle y} может также зависеть от x . {\displaystyle x.}
      • d φ d x = ∂ φ ∂ x + ∂ φ ∂ y d y d x {\displaystyle {\frac {{\mathrm {d} }\varphi }{{\mathrm {d} }x}}={\frac {\partial \varphi }{\partial x}}+{\frac {\partial \varphi }{\partial y}}{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}}
    • Сравнение слагаемых дает нам M (x , y) = ∂ φ ∂ x {\displaystyle M(x,y)={\frac {\partial \varphi }{\partial x}}} и N (x , y) = ∂ φ ∂ y . {\displaystyle N(x,y)={\frac {\partial \varphi }{\partial y}}.} Это типичный результат для уравнений с несколькими переменными, при котором смешанные производные гладких функций равны друг другу. Иногда такой случай называют теоремой Клеро . В этом случае дифференциальное уравнение является уравнением в полных дифференциалах, если выполняется следующее условие:
      • ∂ M ∂ y = ∂ N ∂ x {\displaystyle {\frac {\partial M}{\partial y}}={\frac {\partial N}{\partial x}}}
    • Метод решения уравнений в полных дифференциалах аналогичен нахождению потенциальных функций при наличии нескольких производных, на чем мы кратко остановимся. Сначала проинтегрируем M {\displaystyle M} по x . {\displaystyle x.} Поскольку M {\displaystyle M} является функцией и x {\displaystyle x} , и y , {\displaystyle y,} при интегрировании мы получим неполную функцию φ , {\displaystyle \varphi ,} обозначенную как φ ~ {\displaystyle {\tilde {\varphi }}} . В результат входит также зависящая от y {\displaystyle y} постоянная интегрирования.
      • φ (x , y) = ∫ M (x , y) d x = φ ~ (x , y) + c (y) {\displaystyle \varphi (x,y)=\int M(x,y){\mathrm {d} }x={\tilde {\varphi }}(x,y)+c(y)}
    • После этого для получения c (y) {\displaystyle c(y)} можно взять частную производную полученной функции по y , {\displaystyle y,} приравнять результат N (x , y) {\displaystyle N(x,y)} и проинтегрировать. Можно также сначала проинтегрировать N {\displaystyle N} , а затем взять частную производную по x {\displaystyle x} , что позволит найти произвольную функцию d (x) . {\displaystyle d(x).} Подходят оба метода, и обычно для интегрирования выбирается более простая функция.
      • N (x , y) = ∂ φ ∂ y = ∂ φ ~ ∂ y + d c d y {\displaystyle N(x,y)={\frac {\partial \varphi }{\partial y}}={\frac {\partial {\tilde {\varphi }}}{\partial y}}+{\frac {{\mathrm {d} }c}{{\mathrm {d} }y}}}
    • Пример 1.5. Можно взять частные производные и убедиться в том, что приведенное ниже уравнение является уравнением в полных дифференциалах.
      • 3 x 2 + y 2 + 2 x y d y d x = 0 {\displaystyle 3x^{2}+y^{2}+2xy{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=0}
      • φ = ∫ (3 x 2 + y 2) d x = x 3 + x y 2 + c (y) ∂ φ ∂ y = N (x , y) = 2 x y + d c d y {\displaystyle {\begin{aligned}\varphi &=\int (3x^{2}+y^{2}){\mathrm {d} }x=x^{3}+xy^{2}+c(y)\\{\frac {\partial \varphi }{\partial y}}&=N(x,y)=2xy+{\frac {{\mathrm {d} }c}{{\mathrm {d} }y}}\end{aligned}}}
      • d c d y = 0 , c (y) = C {\displaystyle {\frac {{\mathrm {d} }c}{{\mathrm {d} }y}}=0,\quad c(y)=C}
      • x 3 + x y 2 = C {\displaystyle x^{3}+xy^{2}=C}
    • Если дифференциальное уравнение не является уравнением в полных дифференциалах, в некоторых случаях можно найти интегрирующий множитель, который позволит преобразовать его в уравнение в полных дифференциалах. Однако подобные уравнения редко применяются на практике, и хотя интегрирующий множитель существует , найти его бывает непросто , поэтому эти уравнения не рассматриваются в данной статье.

Часть 2

Уравнения второго порядка
  1. Однородные линейные дифференциальные уравнения с постоянными коэффициентами. Эти уравнения широко используются на практике, поэтому их решение имеет первоочередное значение. В данном случае речь идет не об однородных функциях, а о том, что в правой части уравнения стоит 0. В следующем разделе будет показано, как решаются соответствующие неоднородные дифференциальные уравнения. Ниже a {\displaystyle a} и b {\displaystyle b} являются константами.

    D 2 y d x 2 + a d y d x + b y = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+a{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}

    Характеристическое уравнение . Данное дифференциальное уравнение примечательно тем, что его можно очень легко решить, если обратить внимание на то, какими свойствами должны обладать его решения. Из уравнения видно, что y {\displaystyle y} и его производные пропорциональны друг другу. Из предыдущих примеров, которые были рассмотрены в разделе об уравнениях первого порядка, мы знаем, что таким свойством обладает лишь экспоненциальная функция. Следовательно, можно выдвинуть анзац (обоснованное предположение) о том, каким будет решение данного уравнения.

    • Решение будет иметь вид экспоненциальной функции e r x , {\displaystyle e^{rx},} где r {\displaystyle r} - постоянная, значение которой следует найти. Подставим эту функцию в уравнение и получим следующее выражение
      • e r x (r 2 + a r + b) = 0 {\displaystyle e^{rx}(r^{2}+ar+b)=0}
    • Это уравнение свидетельствует о том, что произведение экспоненциальной функции и полинома должно равняться нулю. Известно, что экспонента не может равняться нулю ни при каких значениях степени. Отсюда заключаем, что нулю равен полином. Таким образом, мы свели задачу решения дифференциального уравнения к намного более простой задаче решения алгебраического уравнения, которое называется характеристическим уравнением для данного дифференциального уравнения.
      • r 2 + a r + b = 0 {\displaystyle r^{2}+ar+b=0}
      • r ± = − a ± a 2 − 4 b 2 {\displaystyle r_{\pm }={\frac {-a\pm {\sqrt {a^{2}-4b}}}{2}}}
    • Мы получили два корня. Поскольку данное дифференциальное уравнение является линейным, его общее решение представляет собой линейную комбинацию частных решений. Так как это уравнение второго порядка, мы знаем, что это действительно общее решение, и других не существует. Более строгое обоснование этого заключается в теоремах о существовании и единственности решения, которые можно найти в учебниках.
    • Полезный способ проверить, являются ли два решения линейно независимыми, заключается в вычислении вронскиана . Вронскиан W {\displaystyle W} - это определитель матрицы, в колонках которой стоят функции и их последовательные производные. Теорема линейной алгебры гласит, что входящие в вронскиан функции линейно зависимы, если вронскиан равен нулю. В данном разделе мы можем проверить, являются ли два решения линейно независимыми - для этого необходимо убедиться, что вронскиан не равен нулю. Вронскиан важен при решении неоднородных дифференциальных уравнений с постоянными коэффициентами методом вариации параметров.
      • W = | y 1 y 2 y 1 ′ y 2 ′ | {\displaystyle W={\begin{vmatrix}y_{1}&y_{2}\\y_{1}"&y_{2}"\end{vmatrix}}}
    • В терминах линейной алгебры множество всех решений данного дифференциального уравнения образует векторное пространство, размерность которого равна порядку дифференциального уравнения. В этом пространстве можно выбрать базис из линейно независимых друг от друга решений. Это возможно благодаря тому, что на функцию y (x) {\displaystyle y(x)} действует линейный оператор . Производная является линейным оператором, поскольку она преобразует пространство дифференцируемых функций в пространство всех функций. Уравнения называются однородными в тех случаях, когда для какого-либо линейного оператора L {\displaystyle L} требуется найти решение уравнения L [ y ] = 0. {\displaystyle L[y]=0.}

    Перейдем теперь к рассмотрению нескольких конкретных примеров. Случай кратных корней характеристического уравнения рассмотрим чуть позже, в разделе о понижении порядка.

    Если корни r ± {\displaystyle r_{\pm }} являются различными действительными числами, дифференциальное уравнение имеет следующее решение

    • y (x) = c 1 e r + x + c 2 e r − x {\displaystyle y(x)=c_{1}e^{r_{+}x}+c_{2}e^{r_{-}x}}

    Два комплексных корня. Из основной теоремы алгебры следует, что решения решения полиномиальных уравнений с действительными коэффициентами имеют корни, которые вещественны или образуют сопряженные пары. Следовательно, если комплексное число r = α + i β {\displaystyle r=\alpha +i\beta } является корнем характеристического уравнения, тогда r ∗ = α − i β {\displaystyle r^{*}=\alpha -i\beta } также является корнем этого уравнения. Таким образом, можно записать решение в виде c 1 e (α + i β) x + c 2 e (α − i β) x , {\displaystyle c_{1}e^{(\alpha +i\beta)x}+c_{2}e^{(\alpha -i\beta)x},} однако это комплексное число, и оно нежелательно при решении практических задач.

    • Вместо этого можно использовать формулу Эйлера e i x = cos ⁡ x + i sin ⁡ x {\displaystyle e^{ix}=\cos x+i\sin x} , которая позволяет записать решение в виде тригонометрических функций:
      • e α x (c 1 cos ⁡ β x + i c 1 sin ⁡ β x + c 2 cos ⁡ β x − i c 2 sin ⁡ β x) {\displaystyle e^{\alpha x}(c_{1}\cos \beta x+ic_{1}\sin \beta x+c_{2}\cos \beta x-ic_{2}\sin \beta x)}
    • Теперь можно вместо постоянной c 1 + c 2 {\displaystyle c_{1}+c_{2}} записать c 1 {\displaystyle c_{1}} , а выражение i (c 1 − c 2) {\displaystyle i(c_{1}-c_{2})} заменить на c 2 . {\displaystyle c_{2}.} После этого получаем следующее решение:
      • y (x) = e α x (c 1 cos ⁡ β x + c 2 sin ⁡ β x) {\displaystyle y(x)=e^{\alpha x}(c_{1}\cos \beta x+c_{2}\sin \beta x)}
    • Есть и другой способ записать решение в виде амплитуды и фазы, который лучше подходит для физических задач.
    • Пример 2.1. Найдем решение приведенного ниже дифференциального уравнения с заданными начальными условиями. Для этого необходимо взять полученное решение, а также его производную , и подставить их в начальные условия, что позволит определить произвольные постоянные.
      • d 2 x d t 2 + 3 d x d t + 10 x = 0 , x (0) = 1 , x ′ (0) = − 1 {\displaystyle {\frac {{\mathrm {d} }^{2}x}{{\mathrm {d} }t^{2}}}+3{\frac {{\mathrm {d} }x}{{\mathrm {d} }t}}+10x=0,\quad x(0)=1,\ x"(0)=-1}
      • r 2 + 3 r + 10 = 0 , r ± = − 3 ± 9 − 40 2 = − 3 2 ± 31 2 i {\displaystyle r^{2}+3r+10=0,\quad r_{\pm }={\frac {-3\pm {\sqrt {9-40}}}{2}}=-{\frac {3}{2}}\pm {\frac {\sqrt {31}}{2}}i}
      • x (t) = e − 3 t / 2 (c 1 cos ⁡ 31 2 t + c 2 sin ⁡ 31 2 t) {\displaystyle x(t)=e^{-3t/2}\left(c_{1}\cos {\frac {\sqrt {31}}{2}}t+c_{2}\sin {\frac {\sqrt {31}}{2}}t\right)}
      • x (0) = 1 = c 1 {\displaystyle x(0)=1=c_{1}}
      • x ′ (t) = − 3 2 e − 3 t / 2 (c 1 cos ⁡ 31 2 t + c 2 sin ⁡ 31 2 t) + e − 3 t / 2 (− 31 2 c 1 sin ⁡ 31 2 t + 31 2 c 2 cos ⁡ 31 2 t) {\displaystyle {\begin{aligned}x"(t)&=-{\frac {3}{2}}e^{-3t/2}\left(c_{1}\cos {\frac {\sqrt {31}}{2}}t+c_{2}\sin {\frac {\sqrt {31}}{2}}t\right)\\&+e^{-3t/2}\left(-{\frac {\sqrt {31}}{2}}c_{1}\sin {\frac {\sqrt {31}}{2}}t+{\frac {\sqrt {31}}{2}}c_{2}\cos {\frac {\sqrt {31}}{2}}t\right)\end{aligned}}}
      • x ′ (0) = − 1 = − 3 2 c 1 + 31 2 c 2 , c 2 = 1 31 {\displaystyle x"(0)=-1=-{\frac {3}{2}}c_{1}+{\frac {\sqrt {31}}{2}}c_{2},\quad c_{2}={\frac {1}{\sqrt {31}}}}
      • x (t) = e − 3 t / 2 (cos ⁡ 31 2 t + 1 31 sin ⁡ 31 2 t) {\displaystyle x(t)=e^{-3t/2}\left(\cos {\frac {\sqrt {31}}{2}}t+{\frac {1}{\sqrt {31}}}\sin {\frac {\sqrt {31}}{2}}t\right)}


    Решение дифференциальных уравнений n-го порядка с постоянными коэффициентами (запись Интуита – национального открытого университета).
  2. Понижение порядка. Понижение порядка представляет собой метод решения дифференциальных уравнений в случае, когда известно одно линейно независимое решение. Данный метод заключается в понижении порядка уравнения на один, что позволяет решить уравнение методами, которые описаны в предыдущем разделе. Пусть известно решение . Основная идея понижения порядка заключается в поиске решения в представленном ниже виде, где необходимо определить функцию v (x) {\displaystyle v(x)} , подстановке его в дифференциальное уравнение и нахождении v (x) . {\displaystyle v(x).} Рассмотрим, как можно использовать понижение порядка для решения дифференциального уравнения с постоянными коэффициентами и кратными корнями.


    Кратные корни однородного дифференциального уравнения с постоянными коэффициентами. Вспомним о том, что уравнение второго порядка должно иметь два линейно независимых решения. Если характеристическое уравнение имеет кратные корни, множество решений не образует пространство, поскольку эти решения линейно зависимы. В этом случае необходимо использовать понижение порядка, чтобы найти второе линейно независимое решение.

    • Пусть характеристическое уравнение имеет кратные корни r {\displaystyle r} . Предположим, что второе решение можно записать в виде y (x) = e r x v (x) {\displaystyle y(x)=e^{rx}v(x)} , и подставим его в дифференциальное уравнение. При этом большинство членов, за исключением слагаемого со второй производной функции v , {\displaystyle v,} сократятся.
      • v ″ (x) e r x = 0 {\displaystyle v""(x)e^{rx}=0}
    • Пример 2.2. Пусть дано приведенное ниже уравнение, которое имеет кратные корни r = − 4. {\displaystyle r=-4.} При подстановке сокращается большинство членов.
      • d 2 y d x 2 + 8 d y d x + 16 y = 0 {\displaystyle {\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+8{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+16y=0}
      • y = v (x) e − 4 x y ′ = v ′ (x) e − 4 x − 4 v (x) e − 4 x y ″ = v ″ (x) e − 4 x − 8 v ′ (x) e − 4 x + 16 v (x) e − 4 x {\displaystyle {\begin{aligned}y&=v(x)e^{-4x}\\y"&=v"(x)e^{-4x}-4v(x)e^{-4x}\\y""&=v""(x)e^{-4x}-8v"(x)e^{-4x}+16v(x)e^{-4x}\end{aligned}}}
      • v ″ e − 4 x − 8 v ′ e − 4 x + 16 v e − 4 x + 8 v ′ e − 4 x − 32 v e − 4 x + 16 v e − 4 x = 0 {\displaystyle {\begin{aligned}v""e^{-4x}&-{\cancel {8v"e^{-4x}}}+{\cancel {16ve^{-4x}}}\\&+{\cancel {8v"e^{-4x}}}-{\cancel {32ve^{-4x}}}+{\cancel {16ve^{-4x}}}=0\end{aligned}}}
    • Подобно нашему анзацу для дифференциального уравнения с постоянными коэффициентами, в данном случае нулю может быть равна лишь вторая производная. Интегрируем два раза и получаем искомое выражение для v {\displaystyle v} :
      • v (x) = c 1 + c 2 x {\displaystyle v(x)=c_{1}+c_{2}x}
    • Тогда общее решение дифференциального уравнения с постоянными коэффициентами в том случае, если характеристическое уравнение имеет кратные корни, может быть записано в следующем виде. Для удобства можно запомнить, что для получения линейной независимости достаточно просто умножить второе слагаемое на x {\displaystyle x} . Этот набор решений является линейно независимым, и таким образом мы нашли все решения данного уравнения.
      • y (x) = (c 1 + c 2 x) e r x {\displaystyle y(x)=(c_{1}+c_{2}x)e^{rx}}

    D 2 y d x 2 + p (x) d y d x + q (x) y = 0. {\displaystyle {\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+p(x){\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+q(x)y=0.} Понижение порядка применимо в том случае, если известно решение y 1 (x) {\displaystyle y_{1}(x)} , которое может быть найдено или дано в условии задачи.

    • Мы ищем решение в виде y (x) = v (x) y 1 (x) {\displaystyle y(x)=v(x)y_{1}(x)} и подставляем его в данное уравнение:
      • v ″ y 1 + 2 v ′ y 1 ′ + p (x) v ′ y 1 + v (y 1 ″ + p (x) y 1 ′ + q (x)) = 0 {\displaystyle v""y_{1}+2v"y_{1}"+p(x)v"y_{1}+v(y_{1}""+p(x)y_{1}"+q(x))=0}
    • Поскольку y 1 {\displaystyle y_{1}} является решением дифференциального уравнения, все члены с v {\displaystyle v} сокращаются. В итоге остается линейное уравнение первого порядка . Чтобы яснее увидеть это, произведем замену переменных w (x) = v ′ (x) {\displaystyle w(x)=v"(x)} :
      • y 1 w ′ + (2 y 1 ′ + p (x) y 1) w = 0 {\displaystyle y_{1}w"+(2y_{1}"+p(x)y_{1})w=0}
      • w (x) = exp ⁡ (∫ (2 y 1 ′ (x) y 1 (x) + p (x)) d x) {\displaystyle w(x)=\exp \left(\int \left({\frac {2y_{1}"(x)}{y_{1}(x)}}+p(x)\right){\mathrm {d} }x\right)}
      • v (x) = ∫ w (x) d x {\displaystyle v(x)=\int w(x){\mathrm {d} }x}
    • Если интегралы могут быть вычислены, мы получаем общее решение в виде комбинации элементарных функций. В противном случае решение можно оставить в интегральном виде.
  3. Уравнение Коши-Эйлера. Уравнение Коши-Эйлера является примером дифференциального уравнения второго порядка с переменными коэффициентами, которое имеет точные решения. Это уравнение применяется на практике, например для решения уравнения Лапласа в сферических координатах.

    X 2 d 2 y d x 2 + a x d y d x + b y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+ax{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=0}

    Характеристическое уравнение. Как видно, в данном дифференциальном уравнении каждый член содержит степенной множитель, степень которого равна порядку соответствующей производной.

    • Таким образом, можно попробовать искать решение в виде y (x) = x n , {\displaystyle y(x)=x^{n},} где необходимо определить n {\displaystyle n} , подобно тому, как мы искали решение в виде экспоненциальной функции для линейного дифференциального уравнения с постоянными коэффициентами. После дифференцирования и подстановки получаем
      • x n (n 2 + (a − 1) n + b) = 0 {\displaystyle x^{n}(n^{2}+(a-1)n+b)=0}
    • Чтобы воспользоваться характеристическим уравнением, следует предположить, что x ≠ 0 {\displaystyle x\neq 0} . Точка x = 0 {\displaystyle x=0} называется регулярной особой точкой дифференциального уравнения. Такие точки важны при решении дифференциальных уравнений с помощью степенных рядов. Данное уравнение имеет два корня, которые могут быть различными и действительными, кратными или комплексно сопряженными.
      • n ± = 1 − a ± (a − 1) 2 − 4 b 2 {\displaystyle n_{\pm }={\frac {1-a\pm {\sqrt {(a-1)^{2}-4b}}}{2}}}

    Два различных действительных корня. Если корни n ± {\displaystyle n_{\pm }} действительны и различны, тогда решение дифференциального уравнения имеет следующий вид:

    • y (x) = c 1 x n + + c 2 x n − {\displaystyle y(x)=c_{1}x^{n_{+}}+c_{2}x^{n_{-}}}

    Два комплексных корня. Если характеристическое уравнение имеет корни n ± = α ± β i {\displaystyle n_{\pm }=\alpha \pm \beta i} , решением является комплексная функция.

    • Чтобы преобразовать решение в действительную функцию, произведем замену переменных x = e t , {\displaystyle x=e^{t},} то есть t = ln ⁡ x , {\displaystyle t=\ln x,} и используем формулу Эйлера. Подобные действия выполнялись ранее при определении произвольных постоянных.
      • y (t) = e α t (c 1 e β i t + c 2 e − β i t) {\displaystyle y(t)=e^{\alpha t}(c_{1}e^{\beta it}+c_{2}e^{-\beta it})}
    • Тогда общее решение можно записать в виде
      • y (x) = x α (c 1 cos ⁡ (β ln ⁡ x) + c 2 sin ⁡ (β ln ⁡ x)) {\displaystyle y(x)=x^{\alpha }(c_{1}\cos(\beta \ln x)+c_{2}\sin(\beta \ln x))}

    Кратные корни. Чтобы получить второе линейно независимое решение, необходимо вновь провести понижение порядка.

    • Требуется довольно много вычислений, но принцип остается тем же: мы подставляем y = v (x) y 1 {\displaystyle y=v(x)y_{1}} в уравнение, первым решением которого является y 1 {\displaystyle y_{1}} . После сокращений получается следующее уравнение:
      • v ″ + 1 x v ′ = 0 {\displaystyle v""+{\frac {1}{x}}v"=0}
    • Это линейное уравнение первого порядка относительно v ′ (x) . {\displaystyle v"(x).} Его решением является v (x) = c 1 + c 2 ln ⁡ x . {\displaystyle v(x)=c_{1}+c_{2}\ln x.} Таким образом, решение можно записать в следующем виде. Это довольно просто запомнить - для получения второго линейно независимого решения просто требуется дополнительный член с ln ⁡ x {\displaystyle \ln x} .
      • y (x) = x n (c 1 + c 2 ln ⁡ x) {\displaystyle y(x)=x^{n}(c_{1}+c_{2}\ln x)}
  4. Неоднородные линейные дифференциальные уравнения с постоянными коэффициентами. Неоднородные уравнения имеют вид L [ y (x) ] = f (x) , {\displaystyle L=f(x),} где f (x) {\displaystyle f(x)} - так называемый свободный член . Согласно теории дифференциальных уравнений, общее решение данного уравнения представляет собой суперпозицию частного решения y p (x) {\displaystyle y_{p}(x)} и дополнительного решения y c (x) . {\displaystyle y_{c}(x).} Однако в данном случае частное решение означает не решение, заданное начальными условиями, а скорее такое решение, которое обусловлено наличием неоднородности (свободным членом). Дополнительное решение - это решение соответствующего однородного уравнения, в котором f (x) = 0. {\displaystyle f(x)=0.} Общее решение представляет собой суперпозицию этих двух решений, поскольку L [ y p + y c ] = L [ y p ] + L [ y c ] = f (x) {\displaystyle L=L+L=f(x)} , а так как L [ y c ] = 0 , {\displaystyle L=0,} такая суперпозиция действительно является общим решением.

    D 2 y d x 2 + a d y d x + b y = f (x) {\displaystyle {\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+a{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+by=f(x)}

    Метод неопределенных коэффициентов. Метод неопределенных коэффициентов применяется в тех случаях, когда свободный член представляет собой комбинацию экспоненциальных, тригонометрических, гиперболических или степенных функций. Лишь эти функции гарантированно имеют конечное число линейно независимых производных. В данном разделе мы найдем частное решение уравнения.

    • Сравним члены в f (x) {\displaystyle f(x)} с членами в не обращая внимание на постоянные множители. Возможны три случая.
      • Нет одинаковых членов. В этом случае частное решение y p {\displaystyle y_{p}} будет представлять собой линейную комбинацию членов из y p {\displaystyle y_{p}}
      • f (x) {\displaystyle f(x)} содержит член x n {\displaystyle x^{n}} и члена из y c , {\displaystyle y_{c},} где n {\displaystyle n} является нулем или положительным целым числом, причем этот член соответствует отдельному корню характеристического уравнения. В этом случае y p {\displaystyle y_{p}} будет состоять из комбинации функции x n + 1 h (x) , {\displaystyle x^{n+1}h(x),} ее линейно независимых производных, а также других членов f (x) {\displaystyle f(x)} и их линейно независимых производных.
      • f (x) {\displaystyle f(x)} содержит член h (x) , {\displaystyle h(x),} который представляет собой произведение x n {\displaystyle x^{n}} и члена из y c , {\displaystyle y_{c},} где n {\displaystyle n} равно 0 или положительному целому числу, причем этот член соответствует кратному корню характеристического уравнения. В этом случае y p {\displaystyle y_{p}} представляет собой линейную комбинацию функции x n + s h (x) {\displaystyle x^{n+s}h(x)} (где s {\displaystyle s} - кратность корня) и ее линейно независимых производных, а также других членов функции f (x) {\displaystyle f(x)} и ее линейно независимых производных.
    • Запишем y p {\displaystyle y_{p}} в виде линейной комбинации перечисленных выше членов. Благодаря этим коэффициентам в линейной комбинации данный метод получил название "метода неопределенных коэффициентов". При появлении содержащихся в y c {\displaystyle y_{c}} членов их можно отбросить ввиду наличия произвольных постоянных в y c . {\displaystyle y_{c}.} После этого подставляем y p {\displaystyle y_{p}} в уравнение и приравниваем схожие члены.
    • Определяем коэффициенты. На данном этапе получается система алгебраических уравнений, которую обычно можно решить без особых проблем. Решение этой системы позволяет получить y p {\displaystyle y_{p}} и тем самым решить уравнение.
    • Пример 2.3. Рассмотрим неоднородное дифференциальное уравнение, свободный член которого содержит конечное число линейно независимых производных. Частное решение такого уравнения можно найти методом неопределенных коэффициентов.
      • d 2 y d t 2 + 6 y = 2 e 3 t − cos ⁡ 5 t {\displaystyle {\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }t^{2}}}+6y=2e^{3t}-\cos 5t}
      • y c (t) = c 1 cos ⁡ 6 t + c 2 sin ⁡ 6 t {\displaystyle y_{c}(t)=c_{1}\cos {\sqrt {6}}t+c_{2}\sin {\sqrt {6}}t}
      • y p (t) = A e 3 t + B cos ⁡ 5 t + C sin ⁡ 5 t {\displaystyle y_{p}(t)=Ae^{3t}+B\cos 5t+C\sin 5t}
      • 9 A e 3 t − 25 B cos ⁡ 5 t − 25 C sin ⁡ 5 t + 6 A e 3 t + 6 B cos ⁡ 5 t + 6 C sin ⁡ 5 t = 2 e 3 t − cos ⁡ 5 t {\displaystyle {\begin{aligned}9Ae^{3t}-25B\cos 5t&-25C\sin 5t+6Ae^{3t}\\&+6B\cos 5t+6C\sin 5t=2e^{3t}-\cos 5t\end{aligned}}}
      • { 9 A + 6 A = 2 , A = 2 15 − 25 B + 6 B = − 1 , B = 1 19 − 25 C + 6 C = 0 , C = 0 {\displaystyle {\begin{cases}9A+6A=2,&A={\dfrac {2}{15}}\\-25B+6B=-1,&B={\dfrac {1}{19}}\\-25C+6C=0,&C=0\end{cases}}}
      • y (t) = c 1 cos ⁡ 6 t + c 2 sin ⁡ 6 t + 2 15 e 3 t + 1 19 cos ⁡ 5 t {\displaystyle y(t)=c_{1}\cos {\sqrt {6}}t+c_{2}\sin {\sqrt {6}}t+{\frac {2}{15}}e^{3t}+{\frac {1}{19}}\cos 5t}

    Метод Лагранжа. Метод Лагранжа, или метод вариации произвольных постоянных, представляет собой более общий метод решения неоднородных дифференциальных уравнений, особенно в тех случаях, когда свободный член не содержит конечное число линейно независимых производных. Например, при свободных членах tan ⁡ x {\displaystyle \tan x} или x − n {\displaystyle x^{-n}} для нахождения частного решения необходимо использовать метод Лагранжа. Метод Лагранжа можно даже использовать для решения дифференциальных уравнений с переменными коэффициентами, хотя в этом случае, за исключением уравнения Коши-Эйлера, он применяется реже, поскольку дополнительное решение обычно не выражается через элементарные функции.

    • Предположим, что решение имеет следующий вид. Его производная приведена во второй строке.
      • y (x) = v 1 (x) y 1 (x) + v 2 (x) y 2 (x) {\displaystyle y(x)=v_{1}(x)y_{1}(x)+v_{2}(x)y_{2}(x)}
      • y ′ = v 1 ′ y 1 + v 1 y 1 ′ + v 2 ′ y 2 + v 2 y 2 ′ {\displaystyle y"=v_{1}"y_{1}+v_{1}y_{1}"+v_{2}"y_{2}+v_{2}y_{2}"}
    • Поскольку предполагаемое решение содержит две неизвестных величины, необходимо наложить дополнительное условие. Выберем это дополнительное условие в следующем виде:
      • v 1 ′ y 1 + v 2 ′ y 2 = 0 {\displaystyle v_{1}"y_{1}+v_{2}"y_{2}=0}
      • y ′ = v 1 y 1 ′ + v 2 y 2 ′ {\displaystyle y"=v_{1}y_{1}"+v_{2}y_{2}"}
      • y ″ = v 1 ′ y 1 ′ + v 1 y 1 ″ + v 2 ′ y 2 ′ + v 2 y 2 ″ {\displaystyle y""=v_{1}"y_{1}"+v_{1}y_{1}""+v_{2}"y_{2}"+v_{2}y_{2}""}
    • Теперь мы можем получить второе уравнение. После подстановки и перераспределения членов можно сгруппировать вместе члены с v 1 {\displaystyle v_{1}} и члены с v 2 {\displaystyle v_{2}} . Эти члены сокращаются, поскольку y 1 {\displaystyle y_{1}} и y 2 {\displaystyle y_{2}} являются решениями соответствующего однородного уравнения. В результате получаем следующую систему уравнений
      • v 1 ′ y 1 + v 2 ′ y 2 = 0 v 1 ′ y 1 ′ + v 2 ′ y 2 ′ = f (x) {\displaystyle {\begin{aligned}v_{1}"y_{1}+v_{2}"y_{2}&=0\\v_{1}"y_{1}"+v_{2}"y_{2}"&=f(x)\\\end{aligned}}}
    • Эту систему можно преобразовать в матричное уравнение вида A x = b , {\displaystyle A{\mathbf {x} }={\mathbf {b} },} решением которого является x = A − 1 b . {\displaystyle {\mathbf {x} }=A^{-1}{\mathbf {b} }.} Для матрицы 2 × 2 {\displaystyle 2\times 2} обратная матрица находится путем деления на определитель, перестановки диагональных элементов и изменением знака недиагональных элементов. Фактически, определитель данной матрицы является вронскианом.
      • (v 1 ′ v 2 ′) = 1 W (y 2 ′ − y 2 − y 1 ′ y 1) (0 f (x)) {\displaystyle {\begin{pmatrix}v_{1}"\\v_{2}"\end{pmatrix}}={\frac {1}{W}}{\begin{pmatrix}y_{2}"&-y_{2}\\-y_{1}"&y_{1}\end{pmatrix}}{\begin{pmatrix}0\\f(x)\end{pmatrix}}}
    • Выражения для v 1 {\displaystyle v_{1}} и v 2 {\displaystyle v_{2}} приведены ниже. Как и в методе понижения порядка, в данном случае при интегрировании появляется произвольная постоянная, которая включает дополнительное решение в общее решение дифференциального уравнения.
      • v 1 (x) = − ∫ 1 W f (x) y 2 (x) d x {\displaystyle v_{1}(x)=-\int {\frac {1}{W}}f(x)y_{2}(x){\mathrm {d} }x}
      • v 2 (x) = ∫ 1 W f (x) y 1 (x) d x {\displaystyle v_{2}(x)=\int {\frac {1}{W}}f(x)y_{1}(x){\mathrm {d} }x}


    Лекция национального открытого университета Интуит под названием "Линейные дифференциальные уравнения n-го порядка с постоянными коэффициентами".

Практическое применение

Дифференциальные уравнения устанавливают связь между функцией и одной или несколькими ее производными. Поскольку подобные связи чрезвычайно распространены, дифференциальные уравнения нашли широкое применение в самых разных сферах, а так как мы живем в четырех измерениях, эти уравнения часто представляют собой дифференциальные уравнения в частных производных. В данном разделе рассмотрены некоторые из наиболее важных уравнений этого типа.

  • Экспоненциальный рост и распад. Радиоактивный распад. Составные проценты. Скорость химических реакций. Концентрация лекарств в крови. Неограниченный рост популяции. Закон Ньютона-Рихмана. В реальном мире существует множество систем, в которых скорость роста или распада в любой момент времени пропорциональна количеству в данный момент времени или может быть хорошо аппроксимирована моделью. Это объясняется тем, что решение данного дифференциального уравнения, экспоненциальная функция, является одной из наиболее важных функций в математике и других науках. В более общем случае при контролируемом росте популяции система может включать дополнительные члены, которые ограничивают рост. В приведенном ниже уравнении постоянная k {\displaystyle k} может быть как больше, так и меньше нуля.
    • d y d x = k x {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=kx}
  • Гармонические колебания. И в классической, и в квантовой механике гармонический осциллятор является одной из наиболее важных физических систем благодаря своей простоте и широкому применению для аппроксимации более сложных систем, таких как простой маятник. В классической механике гармонические колебания описываются уравнением, которое связывает положение материальной точки с ее ускорением посредством закона Гука. При этом можно учитывать также демпфирующие и движущие силы. В приведенном ниже выражении x ˙ {\displaystyle {\dot {x}}} - производная по времени от x , {\displaystyle x,} β {\displaystyle \beta } - параметр, который описывает демпфирующую силу, ω 0 {\displaystyle \omega _{0}} - угловая частота системы, F (t) {\displaystyle F(t)} - зависящая от времени движущая сила. Гармонический осциллятор присутствует также в электромагнитных колебательных контурах, где его можно реализовать с большей точностью, чем в механических системах.
    • x ¨ + 2 β x ˙ + ω 0 2 x = F (t) {\displaystyle {\ddot {x}}+2\beta {\dot {x}}+\omega _{0}^{2}x=F(t)}
  • Уравнение Бесселя. Дифференциальное уравнение Бесселя используется во многих областях физики, в том числе для решения волнового уравнения, уравнения Лапласа и уравнения Шредингера, особенно при наличии цилиндрической или сферической симметрии. Это дифференциальное уравнение второго порядка с переменными коэффициентами не является уравнением Коши-Эйлера, поэтому его решения не могут быть записаны в виде элементарных функций. Решениями уравнения Бесселя являются функции Бесселя, которые хорошо изучены благодаря тому, что применяются во многих областях. В выражении ниже α {\displaystyle \alpha } - константа, которая соответствует порядку функции Бесселя.
    • x 2 d 2 y d x 2 + x d y d x + (x 2 − α 2) y = 0 {\displaystyle x^{2}{\frac {{\mathrm {d} }^{2}y}{{\mathrm {d} }x^{2}}}+x{\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}+(x^{2}-\alpha ^{2})y=0}
  • Уравнения Максвелла. Наряду с силой Лоренца уравнения Максвелла составляют основу классической электродинамики. Это четыре дифференциальных уравнения в частных производных для электрического E (r , t) {\displaystyle {\mathbf {E} }({\mathbf {r} },t)} и магнитного B (r , t) {\displaystyle {\mathbf {B} }({\mathbf {r} },t)} поля. В приведенных ниже выражениях ρ = ρ (r , t) {\displaystyle \rho =\rho ({\mathbf {r} },t)} - плотность заряда, J = J (r , t) {\displaystyle {\mathbf {J} }={\mathbf {J} }({\mathbf {r} },t)} - плотность тока, а ϵ 0 {\displaystyle \epsilon _{0}} и μ 0 {\displaystyle \mu _{0}} - соответственно электрическая и магнитная постоянные.
    • ∇ ⋅ E = ρ ϵ 0 ∇ ⋅ B = 0 ∇ × E = − ∂ B ∂ t ∇ × B = μ 0 J + μ 0 ϵ 0 ∂ E ∂ t {\displaystyle {\begin{aligned}\nabla \cdot {\mathbf {E} }&={\frac {\rho }{\epsilon _{0}}}\\\nabla \cdot {\mathbf {B} }&=0\\\nabla \times {\mathbf {E} }&=-{\frac {\partial {\mathbf {B} }}{\partial t}}\\\nabla \times {\mathbf {B} }&=\mu _{0}{\mathbf {J} }+\mu _{0}\epsilon _{0}{\frac {\partial {\mathbf {E} }}{\partial t}}\end{aligned}}}
  • Уравнение Шредингера. В квантовой механике уравнение Шредингера является основным уравнением движения, которое описывает перемещение частиц в соответствии с изменением волновой функции Ψ = Ψ (r , t) {\displaystyle \Psi =\Psi ({\mathbf {r} },t)} со временем. Уравнение движения описывается поведением гамильтониана H ^ {\displaystyle {\hat {H}}} - оператора , который описывает энергию системы. Одним из широко известных примеров уравнения Шредингера в физике является уравнение для одной нерелятивистской частицы, на которую действует потенциал V (r , t) {\displaystyle V({\mathbf {r} },t)} . Многие системы описываются зависящим от времени уравнением Шредингера, при этом в левой части уравнения стоит E Ψ , {\displaystyle E\Psi ,} где E {\displaystyle E} - энергия частицы. В выражениях ниже ℏ {\displaystyle \hbar } - приведенная постоянная Планка.
    • i ℏ ∂ Ψ ∂ t = H ^ Ψ {\displaystyle i\hbar {\frac {\partial \Psi }{\partial t}}={\hat {H}}\Psi }
    • i ℏ ∂ Ψ ∂ t = (− ℏ 2 2 m ∇ 2 + V (r , t)) Ψ {\displaystyle i\hbar {\frac {\partial \Psi }{\partial t}}=\left(-{\frac {\hbar ^{2}}{2m}}\nabla ^{2}+V({\mathbf {r} },t)\right)\Psi }
  • Волновое уравнение. Без волн нельзя представить физику и технику, они присутствуют во всех типах систем. В общем случае волны описываются приведенным ниже уравнением, в котором u = u (r , t) {\displaystyle u=u({\mathbf {r} },t)} является искомой функцией, а c {\displaystyle c} - экспериментально определяемая постоянная. Даламбер был первым, кто обнаружил, что для одномерного случая решением волнового уравнения является любая функция с аргументом x − c t {\displaystyle x-ct} , которая описывает волну произвольной формы, распространяющуюся вправо. Общее решение для одномерного случая представляет собой линейную комбинацию этой функции со второй функцией с аргументом x + c t {\displaystyle x+ct} , которая описывает волну, распространяющуюся влево. Это решение представлено во второй строке.
    • ∂ 2 u ∂ t 2 = c 2 ∇ 2 u {\displaystyle {\frac {\partial ^{2}u}{\partial t^{2}}}=c^{2}\nabla ^{2}u}
    • u (x , t) = f (x − c t) + g (x + c t) {\displaystyle u(x,t)=f(x-ct)+g(x+ct)}
  • Уравнения Навье-Стокса. Уравнения Навье-Стокса описывают движение жидкостей. Поскольку жидкости присутствуют практически в каждой области науки и техники, эти уравнения чрезвычайно важны для предсказания погоды, конструирования самолетов, изучения океанских течений и решения множества других прикладных задач. Уравнения Навье-Стокса являются нелинейными дифференциальными уравнениями в частных производных, и в большинстве случаев решить их очень сложно, поскольку нелинейность приводит к турбулентности, и для получения устойчивого решения численными методами необходимо разбиение на очень мелкие ячейки, что требует значительных вычислительных мощностей. Для практических целей в гидродинамике для моделирования турбулентных потоков используют такие методы, как усреднение по времени. Сложными задачами являются даже более основные вопросы, такие как существование и единственность решений для нелинейных уравнений в частных производных, а доказательство существования и единственности решения для уравнений Навье-Стокса в трех измерениях входит в число математических задач тысячелетия. Ниже приведены уравнение потока несжимаемой жидкости и уравнение непрерывности.
    • ∂ u ∂ t + (u ⋅ ∇) u − ν ∇ 2 u = − ∇ h , ∂ ρ ∂ t + ∇ ⋅ (ρ u) = 0 {\displaystyle {\frac {\partial {\mathbf {u} }}{\partial t}}+({\mathbf {u} }\cdot \nabla){\mathbf {u} }-\nu \nabla ^{2}{\mathbf {u} }=-\nabla h,\quad {\frac {\partial \rho }{\partial t}}+\nabla \cdot (\rho {\mathbf {u} })=0}
  • Многие дифференциальные уравнения просто невозможно решить приведенными выше методами, особенно упомянутые в последнем разделе. Это касается тех случаев, когда уравнение содержит переменные коэффициенты и не является уравнением Коши-Эйлера, или когда уравнение является нелинейным, за исключением нескольких очень редких случаев. Тем не менее, приведенные выше методы позволяют решить многие важные дифференциальные уравнения, которые часто встречаются в различных областях науки.
  • В отличие от дифференцирования, которое позволяет найти производную любой функции, интеграл многих выражений нельзя выразить в элементарных функциях. Поэтому не тратьте время в попытках вычислить интеграл там, где это невозможно. Загляните в таблицу интегралов. Если решение дифференциального уравнения нельзя выразить через элементарные функции, иногда его можно представить в интегральной форме, и в данном случае неважно, можно ли вычислить данный интеграл аналитически.

Предупреждения

  • Внешний вид дифференциального уравнения может оказаться обманчивым. Например, ниже приведены два дифференциальных уравнения первого порядка. Первое уравнение легко решается с помощью описанных в данной статье методов. На первый взгляд незначительная замена y {\displaystyle y} на y 2 {\displaystyle y^{2}} во втором уравнении делает его нелинейным, и его становится очень сложно решить.
    • d y d x = x 2 + y {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=x^{2}+y}
    • d y d x = x 2 + y 2 {\displaystyle {\frac {{\mathrm {d} }y}{{\mathrm {d} }x}}=x^{2}+y^{2}}


Похожие статьи