Как найти производную сложной тригонометрической функции. Урок алгебры и начала анализа "производная тригонометрических функций"

Для нахождения производной тригонометрической функции нужно пользоваться таблицей производных , а именно производными 6-13.

При нахождении производных простых тригонометрических функций во избежание распространённых ошибок следует обращать внимание на следующие моменты:

  • в выражении функции часто одно из слагаемых представляет собой синус, косинус или другую тригонометрическую функцию не от аргумента функции, а от числа (константы), поэтому производная этого слагаемого равна нулю;
  • почти всегда нужно упростить выражение, полученное в результате дифференцирования, а для этого нужно уверенно пользоваться знаниями по действиям с дробями;
  • для упрощения выражения почти всегда нужно знать тригонометрические тождества, например, формулу двойного угла и формулу единицы как сумму квадратов синуса и косинуса .

Пример 1. Найти производную функции

Решение. Допустим, с производной косинуса всё понятно, скажут многие, начинающие изучать производные. А как быть с производной синуса двенадцати, делённых на пи? Ответ: считать равной нулю! Здесь синус (функция всё-таки!) - ловушка, потому что аргумент - не переменная икс или любая другая переменная, а просто число. То есть, синус этого числа - тоже число. А производная числа (константы), как мы знаем из таблицы производных, равна нулю. Итак, оставляем только минус синус икса и находим его производную, не забывая про знак:

.

Пример 2. Найти производную функции

.

Решение. Второе слагаемое - тот же случай, что и первое слагаемое в предыдущем примере. То есть, число, а производная числа равна нулю. Находим производную второго слагаемого как производную частного:

Пример 3. Найти производную функции

Решение. Это уже другая задача: здесь в первом слагаемом нет ни арксинуса, ни другой тригонометической функции, но есть икс, а значит, это функция от икса. Следовательно, дифференцируем её как слагаемое в сумме функций:

Здесь потребовались навыки в действиях с дробями , а именно - в ликвидации трёхэтажности дроби.

Пример 4. Найти производную функции

.

Решение. Здесь буква "фи" играет ту же роль, что "икс" в предыдущих случаях (и в большинстве других, но не во всех) - независимой переменной. Поэтому, когда будем искать производную произведения функций, не будем спешить объявлять равной нулю производную корня от "фи". Итак:

Но на этом решение не заканчивается. Так как в двух скобках собраны подобные члены, от нас ещё требуется преобразовать (упростить) выражение. Поэтому умножаем скобки на вынесенные за них множители, а далее приводим слагаемые к общему знаменателю и выполняем другие элементарные преобразования:

Пример 5. Найти производную функции

Решение. В этом примере от нас потребуется знание того факта, что существует такая тригонометрическая функция - секанс - и её формулы через косинус. Дифференцируем:

Пример 6. Найти производную функции

.

Решение. В этом примере от нас потребуется помнить из школьного курса формулу двойного угла. Но сначала дифференцируем:

,

(это и есть формула двойного угла)

Из курса геометрии и математики школьники привыкли, что понятие производной доносится до них через площадь фигуры, дифференциалы, пределы функций, а также лимиты. Попробуем посмотреть на понятие производной под другим углом, и определить, как можно увязать производную и тригонометрические функции.

Итак, рассмотрим некую произвольную кривую, которая описывается абстрактной функцией y = f(x).

Представим что график — это карта туристического маршрута. Приращение ∆x (дельта икс) на рисунке — это определенный промежуток пути, а ∆y – это изменение высоты тропы над уровнем моря.
Тогда получается, что отношение ∆x/∆y будет характеризовать сложно маршрута на каждом отрезке пути. Узнав это значение можно с уверенностью сказать крутой ли подъем/спуск, понадобится ли альпинистское снаряжение и нужна ли туристам определенная физическая подготовка. Но показатель этот будет справедлив только для одного маленького промежутка ∆x.

Если организатор похода возьмет значения для начальной и конечной точек тропы, то есть ∆x – будет равен длине маршрута, то не сможет получить объективные данные о степени сложности путешествия. Следовательно, необходимо построить еще один график, который будет характеризовать скорость и «качество» изменений пути, другими словами определять отношение ∆x/∆y для каждого «метра» маршрута.

Этот график и будет являться наглядной производной для конкретной тропы и объективно опишет ее изменения на каждом интересующем интервале. Убедиться в этом очень просто, значение ∆x/∆y – есть не что иное, как дифференциал, взятый для конкретного значения x и y. Применим же дифференцирование не определенным координатам, а к функции в целом:

Производная и тригонометрические функции

Тригонометрические функции неразрывно связаны с производной. Понять это можно из следующего чертежа. На рисунке координатной оси изображена функция Y = f (x) – синяя кривая.

K (x0; f (x0)) – произвольная точка, x0 + ∆x – приращение по оси OX, а f (x0 + ∆x) – приращение по оси OY в некой точке L.

Проведем прямую через точки K и L и построим прямоугольный треугольник KLN. Если мысленно перемещать отрезок LN по графику Y = f (x), то точки L и N будут стремиться к значениям K (x0; f (x0)). Назовем эту точку условным началом графика — лимитом, если же функция бесконечна, хотя бы на одном из промежутков – это стремление также будет бесконечным, а его предельное значение близким к 0.

Характер данного стремления можно описать касательной к выбранной точке y = kx + b или графиком производной первоначальной функции dy – зеленая прямая.

Но где же здесь тригонометрия?! Все очень просто рассмотрим прямоугольный треугольник KLN. Значение дифференциала для конкретной точки K есть тангенс угла α или ∠K:

Таким образом можно описать геометрический смымсл производной и ее взаимосвязь с тригонометрическими функциями.

Формулы производных для тригонометрических функций

Преобразования синуса, косинуса, тангенса и котангенса при определении производной необходимо заучить наизусть.

Последние две формулы не являются ошибкой, дело в том, что существует разница между определением производной простого аргумента и функции в том же качестве.

Рассмотрим сравнительную таблицу с формулами производных от синису, косинуса, тангенса и котангенса:

Также выведены формулы для производных арксинуса, арккосинуса, арктангенса и арккотангенса, хотя они применяются крайне редко:

Стоит отметить, что приведенных формул явно недостаточно для успешного решения типовых заданий ЕГЭ, что будет продемонстрированно при решении конкретного примера поиска производной тригонометрического выражения.

Задание : Необходимо найти производную функции и найти ее значение для π/4:

Решение : Чтобы найти y’ необходимо вспомнить основные формулы преобразования исходной функции в производную, а именно.

Представлено доказательство и вывод формулы для производной синуса - sin(x). Примеры вычисления производных от sin 2x, синуса в квадрате и кубе. Вывод формулы для производной синуса n-го порядка.

Производная по переменной x от синуса x равна косинусу x:
(sin x)′ = cos x .

Доказательство

Для вывода формулы производной синуса, мы воспользуемся определением производной:
.

Чтобы найти этот предел, нам нужно преобразовать выражение таким образом, чтобы свести его к известным законам, свойствам и правилам. Для этого нам нужно знать четыре свойства.
1) Значение первого замечательного предела:
(1) ;
2) Непрерывность функции косинус:
(2) ;
3) Тригонометрические формулы . Нам понадобится следующая формула:
(3) ;
4) Свойство пределов:
Если и , то
(4) .

Применяем эти правила к нашему пределу. Сначала преобразуем алгебраическое выражение
.
Для этого применим формулу
(3) .
В нашем случае
; . Тогда
;
;
;
.

Теперь сделаем подстановку . При , . Применим первый замечательный предел (1):
.

Сделаем такую же подстановку и используем свойство непрерывности (2):
.

Поскольку пределы, вычисленные выше, существуют, то применяем свойство (4):

.

Формула производной синуса доказана.

Примеры

Рассмотрим простые примеры нахождения производных от функций, содержащих синус. Мы найдем производные от следующих функций:
y = sin 2x; y = sin 2 x и y = sin 3 x .

Пример 1

Найти производную от sin 2x .

Решение

Сначала найдем производную от самой простой части:
(2x)′ = 2(x)′ = 2 · 1 = 2.
Применяем .
.
Здесь .

Ответ

(sin 2x)′ = 2 cos 2x.

Пример 2

Найти производную от синуса в квадрате:
y = sin 2 x .

Решение

Перепишем исходную функцию в более понятном виде:
.
Найдем производную от самой простой части:
.
Применяем формулу производной сложной функции.

.
Здесь .

Можно применить одну из формул тригонометрии. Тогда
.

Ответ

Пример 3

Найти производную от синуса в кубе:
y = sin 3 x .

Производные высших порядков

Заметим, что производную от sin x первого порядка можно выразить через синус следующим образом:
.

Найдем производную второго порядка, используя формулу производной сложной функции :

.
Здесь .

Теперь мы можем заметить, что дифференцирование sin x приводит к увеличению его аргумента на . Тогда производная n-го порядка имеет вид:
(5) .

Докажем это, применяя метод математической индукции.

Мы уже проверили, что при , формула (5) справедлива.

Предположим, что формула (5) справедлива при некотором значении . Докажем, что из этого следует, что формула (5) выполняется для .

Выпишем формулу (5) при :
.
Дифференцируем это уравнение, применяя правило дифференцирования сложной функции:

.
Здесь .
Итак, мы нашли:
.
Если подставить , то эта формула примет вид (5).

Формула доказана.

При выводе самой первой формулы таблицы будем исходить из определения производнойфункции в точке. Возьмем , где x – любое действительное число, то есть, x – любое число из области определения функции . Запишем предел отношения приращения функции к приращению аргумента при :

Следует заметить, что под знаком предела получается выражение , которое не являетсянеопределенностью ноль делить на ноль, так как в числителе находится не бесконечно малая величина, а именно ноль. Другими словами, приращение постоянной функции всегда равно нулю.

Таким образом, производная постоянной функции равна нулю на всей области определения .

Производная степенной функции.

Формула производной степенной функции имеет вид , где показатель степени p – любое действительное число.

Докажем сначала формулу для натурального показателя степени, то есть, для p = 1, 2, 3, …

Будем пользоваться определением производной. Запишем предел отношения приращения степенной функции к приращению аргумента:

Для упрощения выражения в числителе обратимся к формуле бинома Ньютона:

Следовательно,

Этим доказана формула производной степенной функции для натурального показателя.

Производная показательной функции.

Вывод формулы производной приведем на основе определения:

Пришли к неопределенности. Для ее раскрытия введем новую переменную , причем при . Тогда . В последнем переходе мы использовали формулу перехода к новому основанию логарифма.

Выполним подстановку в исходный предел:

Если вспомнить второй замечательный предел, то придем к формуле производной показательной функции:

Производная логарифмической функции.

Докажем формулу производной логарифмической функции для всех x из области определения и всех допустимых значениях основания a логарифма. По определению производной имеем:

Как Вы заметили, при доказательстве преобразования проводились с использованием свойств логарифма. Равенство справедливо в силу второго замечательного предела.

Производные тригонометрических функций.

Для вывода формул производных тригонометрических функций нам придется вспомнить некоторые формулы тригонометрии, а также первый замечательный предел.

По определению производной для функции синуса имеем .

Воспользуемся формулой разности синусов:

Осталось обратиться к первому замечательному пределу:

Таким образом, производная функции sin x есть cos x .

Абсолютно аналогично доказывается формула производной косинуса.

Следовательно, производная функции cos x есть –sin x .

Вывод формул таблицы производных для тангенса и котангенса проведем с использованием доказанных правил дифференцирования (производная дроби).

Производные гиперболических функций.

Правила дифференцирования и формула производной показательной функции из таблицы производных позволяют вывести формулы производных гиперболического синуса, косинуса, тангенса и котангенса.

Производная обратной функции.

Чтобы при изложении не было путаницы, давайте обозначать в нижнем индексе аргумент функции, по которому выполняется дифференцирование, то есть, - это производная функции f(x) по x .

Теперь сформулируем правило нахождения производной обратной функции.

Пусть функции y = f(x) и x = g(y) взаимно обратные, определенные на интервалах и соответственно. Если в точке существует конечная отличная от нуля производная функции f(x) , то в точке существует конечная производная обратной функции g(y) , причем . В другой записи .

Можно это правило переформулировать для любого x из промежутка , тогда получим .

Давайте проверим справедливость этих формул.

Найдем обратную функцию для натурального логарифма (здесь y – функция, а x - аргумент). Разрешив это уравнение относительно x , получим (здесь x – функция, а y – ее аргумент). То есть, и взаимно обратные функции.

Из таблицы производных видим, что и .

Убедимся, что формулы нахождения производных обратной функции приводят нас к этим же результатам:



Похожие статьи