Активность радиоактивного вещества. Применение радиоактивных изотопов

Действие радиоактивного излучения на человека

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма . Поэтому при работе с любым источником радиации необходимо принимать все меры по радиационной защите людей, которые могут попасть в зону действия излучения.

Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон.он является продуктом распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает -частицы и превращается в полоний который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана. По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55% ионизирующей радиации за счет радона и только 11% за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8%. Общая доза облучения, которую получает человек за жизнь, во много раз меньшепредельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.

Применение радиоактивных изотопов

Одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка).



Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д.

Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов.

Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы "радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высоко продуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили «меченые атомы» в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 15 32P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения. Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом.Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате -распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

Применение радиоактивности .

1. Биологические действия. Радиоактивные излучения гибельно действуют на живые клетки. Механизм этого действия связан с ионизацией атомов и разложением молекул внутри клеток при прохождении быстрых заряженных частиц. Особенно чувствительны к воздействию излучений клетки, находящиеся в состоянии быстрого роста и размножения. Это обстоятельство используется для лечения раковых опухолей.

Для целей терапии употребляют радиоактивные препараты, испускающие g-излучение, так как последние без заметного ослабления проникают внутрь организма. При не слишком больших дозах облучения раковые клетки гибнут, тогда, как организму больного не причиняется существенного ущерба. Следует отметить, что радиотерапия рака, так же как и рентгенотерапия, отнюдь не является универсальным средством, всегда приводящим к излечению.

Чрезмерно большие дозы радиоактивных излучений вызывают тяжелые заболевания животных и человека (так называемая лучевая болезнь) в могут привести к смерти. В очень малых дозах радиоактивные излучения, главным образом a-излучение, оказывают, напротив, стимулирующее действие на организм. С этим связан целебный эффект радиоактивных минеральных вод, содержащих небольшие количества радия или радона.

2. Светящиеся составы, Люминесцирующие вещества светятся под действием радиоактивных излучений (ср. § 213). Прибавляя к люминесцирующему веществу (например, сернистому цинку) очень небольшое количество соли радия, приготовляют постоянно светящиеся краски. Эти краски, будучи нанесены на циферблаты и стрелки часов, прицельные приспособления и т. п., делают их видимыми в темноте.

3. Определение возраста Земли. Атомная масса обыкновенного свинца, добываемого из руд, не содержащих радиоактивных элементов, составляет 207,2, атомная масса свинца, образующегося в результате распада урана, равна 206. Атомная масса свинца, содержащегося в некоторых урановых минералах, оказывается очень близкой к 206. Отсюда следует, что эти минералы в момент образования (кристаллизации из расплава или раствора) не содержали свинца; весь наличный в таких минералах свинец накопился в результате распада урана. Используя закон радиоактивного распада, можно по отношению количеств свинца и урана в минерале определить его возраста.

Определенный таким методом возраст минералов различного происхождения, содержащих уран, измеряется сотнями миллионов лет. Возраст древнейших минералов превышает 1,5 миллиарда лет.

Слайд 2

Радиоактивность - превращение атомных ядер в другие ядра, сопровождающееся испусканием различных частиц и электромагнитного излучения. Отсюда и название явления: на латыни radio - излучаю, activus - действенный. Это слово ввела Мария Кюри. При распаде нестабильного ядра - радионуклида из него вылетают с большой скоростью одна или несколько частиц высокой энергии. Поток этих частиц называют радиоактивным излучением или попросту радиацией.

Слайд 3

Виды радиоактивных излучений

Когда в руках исследователей появились мощные источники радиации, в миллионы раз более сильные, чем уран (это были препараты радия,полония, актиния), можно было более подробно ознакомиться со свойствами радиоактивного излучения. В первых исследованиях на эту тему самое активное участие приняли Эрнест Резерфорд супруги Мария и Пьер Кюри, А.Беккерель, многие другие. Прежде всего, была изучена проникающая способность лучей, а также действие на излучение магнитного поля. Оказалось, что излучение неоднородно, а представляет собой смесь «лучей». Пьер Кюри обнаружил, что при действии магнитного поля на излучение радия одни лучи отклоняются, а другие нет. Было известно, что магнитное поле отклоняет только заряженные летящие частицы, причем положительные и отрицательные в разные стороны. По направлению отклонения убедились в том, что отклоняемые?-лучи заряжены отрицательно. Дальнейшие опыты показали, что между катодными и?-лучами нет принципиальной разницы, откуда следовало, что они представляют собой поток электронов. Отклоняющиеся лучи обладали более сильной способностью проникать через различные материалы, тогда как неотклоняющиеся легко поглощались даже тонкой алюминиевой фольгой - так вело себя, например, излучение нового элемента полония - его излучение не проникало даже сквозь картонные стенки коробки, в которой хранился препарат. При использовании более сильных магнитов оказалось, что?-лучи тоже отклоняются, только значительно слабее, чем?-лучи, причем в другую сторону. Отсюда следовало, что они заряжены положительно и имеют значительно бoльшую массу (как потом выяснили, масса?-частиц в 7740 раз больше массы электрона). Впервые это явление обнаружили в 1899 А.Беккерель и Ф.Гизель. В дальнейшем выяснилось, что?-частицы представляют собой ядра атомов гелия (нуклид 4Не) с зарядом +2 и массой 4 у.е.. Когда же в 1900 французский физик Поль Вийар (1860-1934) исследовал более подробно отклонение?- и?-лучей, он обнаружил в излучении радия и третий вид лучей, не отклоняющихся в самых сильных магнитных полях, это открытие вскоре подтвердил и Беккерель. Этот вид излучения, по аналогии с альфа- и бета-лучами, был назван гамма-лучами, обозначение разных излучений первыми буквами греческого алфавита предложил Резерфорд. Гамма-лучи оказались сходными с лучами Рентгена, т.е. они представляют собой электромагнитное излучение, но с более короткими длинами волн и соответственно с большей энергией. Все эти виды радиации описала М.Кюри в своей монографии «Радий и радиоактивность». Вместо магнитного поля для «расщепления» радиации можно использовать электрическое поле, только заряженные частицы в нем будут отклоняться не перпендикулярно силовым линиям, а вдоль них - по направлению к отклоняющим пластинам. Долгое время было неясно, откуда берутся все эти лучи. В течение нескольких десятилетий трудами многих физиков была выяснена природа радиоактивного излучения и его свойства, были открыты новые типы радиоактивности.? Альфа-лучи испускают, главным образом, ядра самых тяжелых и потому менее стабильных атомов (в периодической таблице они расположены после свинца). Эти высокоэнергетичные частицы. Обычно наблюдается несколько групп? -частиц, каждая из которых имеет строго определенную энергию. Так, почти все? -частицы, вылетающие из ядер 226Ra, обладают энергией в 4,78 МэВ (мегаэлектрон-вольт) и небольшая доля? -частиц энергией в 4,60 МэВ. Другой изотоп радия - 221Ra испускает четыре группы? -частиц с энергиями 6,76, 6,67, 6,61 и 6,59 МэВ. Это свидетельствует о наличии в ядрах нескольких энергетических уровней, их разность соответствует энергии излучаемых ядром? -квантов. Известны и «чистые» альфа-излучатели.

Слайд 4

Действие радиоактивного излучения на человека

Радиоактивное излучение всех видов (альфа, бета, гамма, нейтроны), а также электромагнитная радиация (рентгеновское излучение) оказывают очень сильное биологическое воздействие на живые организмы, которое заключается в процессах возбуждения и ионизации атомов и молекул, входящих в состав живых клеток. Под действием ионизирующей радиации разрушаются сложные молекулы и клеточные структуры, что приводит к лучевому поражению организма. Поэтому при работе с любым источником радиации необходимо принимать все меры по радиационной защите людей, которые могут попасть в зону действия излучения. Однако человек может подвергаться действию ионизирующей радиации и в бытовых условиях. Серьезную опасность для здоровья человека может представлять инертный, бесцветный, радиоактивный газ радон Как видно из схемы, изображенной на рис.5, радон является продуктом?-распада радия и имеет период полураспада T = 3,82 сут. Радий в небольших количествах содержится в почве, в камнях, в различных строительных конструкциях. Несмотря на сравнительно небольшое время жизни, концентрация радона непрерывно восполняется за счет новых распадов ядер радия, поэтому радон может накапливаться в закрытых помещениях. Попадая в легкие, радон испускает?-частицы и превращается в полоний который не является химически инертным веществом. Далее следует цепь радиоактивных превращений серии урана (рис. 5). По данным Американской комиссии радиационной безопасности и контроля, человек в среднем получает 55% ионизирующей радиации за счет радона и только 11% за счет медицинских обслуживаний. Вклад космических лучей составляет примерно 8%. Общая доза облучения, которую получает человек за жизнь, во много раз меньшепредельно допустимой дозы (ПДД), которая устанавливается для людей некоторых профессий, подвергающихся дополнительному облучению ионизирующей радиацией.

Слайд 5

Применение радиоактивных изотопов

Одним из наиболее выдающихся исследований, проведенных с помощью «меченых атомов», явилось исследование обмена веществ в организмах. Было доказано, что за сравнительно небольшое время организм подвергается почти полному обновлению. Слагающие его атомы заменяются новыми. Лишь железо, как показали опыты по изотопному исследованию крови, является исключением из этого правила. Железо входит в состав гемоглобина красных кровяных шариков. При введении в пищу радиоактивных атомов железа было установлено, что свободный кислород, выделяемый при фотосинтезе, первоначально входил в состав воды, а не углекислого газа. Радиоактивные изотопы применяются в медицине как для постановки диагноза, так и для терапевтических целей. Радиоактивный натрий, вводимый в небольших количествах в кровь, используется для исследования кровообращения, йод интенсивно отлагается в щитовидной железе, особенно при базедовой болезни. Наблюдая с помощью счетчика за отложением радиоактивного йода, можно быстро поставить диагноз. Большие дозы радиоактивного йода вызывают частичное разрушение аномально развивающихся тканей, и поэтому радиоактивный йод используют для лечения базедовой болезни. Интенсивное гамма-излучение кобальта используется при лечении раковых заболеваний (кобальтовая пушка). Не менее обширны применения радиоактивных изотопов в промышленности. Одним из примеров этого может служить следующий способ контроля износа поршневых колец в двигателях внутреннего сгорания. Облучая поршневое кольцо нейтронами, вызывают в нем ядерные реакции и делают его радиоактивным. При работе двигателя частички материала кольца попадают в смазочное масло. Исследуя уровень радиоактивности масла после определенного времени работы двигателя, определяют износ кольца. Радиоактивные изотопы позволяют судить о диффузии металлов, процессах в доменных печах и т. д. Мощное гамма-излучение радиоактивных препаратов используют для исследования внутренней структуры металлических отливок с целью обнаружения в них дефектов. Все более широкое применение получают радиоактивные изотопы в сельском хозяйстве. Облучение семян растений (хлопчатника, капусты, редиса и др.) небольшими дозами гамма-лучей от радиоактивных препаратов приводит к заметному увеличению урожайности. Большие дозы "радиации вызывают мутации у растений и микроорганизмов, что в отдельных случаях приводит к появлению мутантов с новыми ценными свойствами (радиоселекция). Так выведены ценные сорта пшеницы, фасоли и других культур, а также получены высоко продуктивные микроорганизмы, применяемые в производстве антибиотиков. Гамма-излучение радиоактивных изотопов используется также для борьбы с вредными насекомыми и для консервации пищевых продуктов. Широкое применение получили «меченые атомы» в агротехнике. Например, чтобы выяснить, какое из фосфорных удобрений лучше усваивается растением, помечают различные удобрения радиоактивным фосфором 15 32P. Исследуя затем растения на радиоактивность, можно определить количество усвоенного ими фосфора из разных сортов удобрения. Интересным применением радиоактивности является метод датирования археологических и геологических находок по концентрации радиоактивных изотопов. Наиболее часто используется радиоуглеродный метод датирования. Нестабильный изотоп углерода возникает в атмосфере вследствие ядерных реакций, вызываемых космическими лучами. Небольшой процент этого изотопа содержится в воздухе наряду с обычным стабильным изотопом.Растения и другие организмы потребляют углерод из воздуха, и в них накапливаются оба изотопа в той же пропорции, как и в воздухе. После гибели растений они перестают потреблять углерод и нестабильный изотоп в результате?-распада постепенно превращается в азот с периодом полураспада 5730 лет. Путем точного измерения относительной концентрации радиоактивного углерода в останках древних организмов можно определить время их гибели.

Слайд 6

Применения радиоактивности.

1. Биологические действия. Радиоактивные излучения гибельно действуют на живые клетки. Механизм этого действия связан с ионизацией атомов и разложением молекул внутри клеток при прохождении быстрых заряженных частиц. Особенно чувствительны к воздействию излучений клетки, находящиеся в состоянии быстрого роста и размножения. Это обстоятельство используется для лечения раковых опухолей.Для целей терапии употребляют радиоактивные препараты, испускающие g-излучение, так как последние без заметного ослабления проникают внутрь организма. При не слишком больших дозах облучения раковые клетки гибнут, тогда как организму больного не причиняется существенного ущерба. Следует отметить, что радиотерапия рака, так же как и рентгенотерапия, отнюдь не является универсальным средством, всегда приводящим к излечению.Чрезмерно большие дозы радиоактивных излучений вызывают тяжелые заболевания животных и человека (так называемая лучевая болезнь) в могут привести к смерти. В очень малых дозах радиоактивные излучения, главным образом a-излучение, оказывают, напротив, стимулирующее действие на организм. С этим связан целебный эффект радиоактивных минеральных вод, содержащих небольшие количества радия или радона.2. Светящиеся составы, Люминесцирующие вещества светятся под действием радиоактивных излучений (ср. § 213). Прибавляя к люминесцирующему веществу (например, сернистому цинку) очень небольшое количество соли радия, приготовляют постоянно светящиеся краски. Эти краски, будучи нанесены на циферблаты и стрелки часов, прицельные приспособления и т. п., делают их видимыми в темноте.3. Определение возраста Земли. Атомная масса обыкновенного свинца, добываемого из руд, не содержащих радиоактивных элементов, составляет 207,2. Как видно из рис. 389, атомная масса свинца, образующегося в результате распада урана, равна 206. Атомная масса свинца, содержащегося в некоторых урановых минералах, оказывается очень близкой к 206. Отсюда следует, что эти минералы в момент образования (кристаллизации из расплава или раствора) не содержали свинца; весь наличный в таких минералах свинец накопился в результате распада урана. Используя закон радиоактивного распада, можно по отношению количеств свинца и урана в минерале определить его возраст (см. упражнение 32 в конце главы).Определенный таким методом возраст минералов различного происхождения, содержащих уран, измеряется сотнями миллионов лет. Возраст древнейших минералов превышает 1,5 миллиарда лет.Возрастом Земли принято считать время, прошедшее с момента образования твердой земной коры. По многим измерениям, основанным на радиоактивности урана, а также тория и калия, возраст Земли превышает 4 миллиарда лет.

Слайд 7

Посмотреть все слайды

радиация частица облучение радон

Люди научились применять радиацию в мирных целях, с высоким уровнем безопасности, что позволило поднять практически все отрасли на новый уровень.

Получение энергии с помощью АЭС. Из всех отраслей хозяйственной деятельности человека энергетика оказывает самое большое влияние на нашу жизнь. Тепло и свет в домах, транспортные потоки и работа промышленности - все это требует затрат энергии. Эта отрасль является одной из самых быстроразвивающихся. За 30 лет общая мощность ядерных энергоблоков выросла с 5 тысяч до 23 миллионов киловатт.

Мало у кого вызывает сомнения то, что атомная энергетика заняла прочное место в энергетическом балансе человечества.

Рассмотрим применение радиации в дефектоскопии. Рентгеновская и гамма-дефектоскопия - одно из наиболее распространенных применений излучения в промышленности, позволяющее контролировать качество материалов. Рентгеновский метод является неразрушающим, так что проверяемый материал может затем использоваться по назначению. И рентгеновская, и гамма-дефектоскопия основаны на проникающей способности рентгеновского излучения и особенностях его поглощения в материалах.

Гамма-излучение применяется для химических превращений, например, в процессах полимеризации.

Пожалуй, одной из самых главных развивающихся отраслей является ядерная медицина. Ядерная медицина - раздел медицины, связанный с использованием достижений ядерной физики, в частности, радиоизотопов, и т. д.

На сегодняшний день ядерная медицина позволяет исследовать практически все системы органов человека и находит применение в неврологии, кардиологии, онкологии, эндокринологии, пульмонологии и других разделах медицины.

С помощью методов ядерной медицины изучают кровоснабжение органов, метаболизм желчи, функцию почек, мочевого пузыря, щитовидной железы.

Возможно не только получение статических изображений, но и наложение изображений, полученных в разные моменты времени, для изучения динамики. Такая техника применяется, например, при оценке работы сердца.

В России уже активно применяются два типа диагностики с использованием радиоизотопов - сцинтиграфия и позитронно-эмиссионная томография. Они позволяют создать полные модели работы органов.

Медики считают, что при малых дозах радиация оказывает стимулирующее воздействие, тренируя систему биологической защиты человека.

На многих курортах используются радоновые ванны, где уровень радиации немного выше чем в природных условиях.

Было замечено, что у принимающих эти ванны улучшается работоспособность, успокаивается нервная система, быстрее заживают травмы.

Исследования иностранных учёных говорят о том, что частота и смертность от всех видов рака ниже в областях с более высоким естественным радиационным фоном (к таковым можно отнести большинство солнечных стран).

Медицина. Радий и другие естественные радиоизотопы широко применяются для диагностики и лучевой терапии раковых заболеваний. Использование для этой цели искусственных радиоизотопов значительно повысило эффективность лечения. Например, радиоактивный иод, введенный в организм в виде раствора иодида натрия, селективно накапливается в щитовидной железе и поэтому применяется в в клинической практике для определения нарушений функции щитовидной железы и при лечении базедовой болезни. С помощью меченого по натрию физиологического раствора измеряется скорость кровообращения и определяется проходимость кровеносных сосудов конечностей. Радиоактивный фосфор применяется для измерения объема крови и лечения эритремии.

Научные исследования. Радиоактивные метки, в микроколичествах введенные в физические или химические системы, позволяют следить за всеми происходящими в них изменениями. Например, выращивая растения в атмосфере радиоактивного диоксида углерода, химики смогли понять тонкие детали процесса образования в растениях сложных углеводов из диоксида углерода и воды. В результате непрерывной бомбардировки земной атмосферы космическими лучами с высокой энергией находящийся в ней азот-14, захватывая нейтроны и испуская протоны, превращается в радиоактивный углерод-14. Полагая, что интенсивность бомбардировки и, следовательно, равновесное количество углерода-14 в последние тысячелетия оставались неизменными и учитывая период полураспада C-14 по его остаточной активности, можно определять возраст найденных остатков животных и растений (радиоуглеродный метод). Этим методом удалось с большой достоверностью датировать обнаруженные стоянки доисторического человека, существовавшие более 25 000 лет тому назад.

Ка́мера Ви́льсона (она же туманная камера ) - один из первых в истории приборов для регистрации следов (треков) заряженных частиц.

Изобретена шотландским физиком Чарлзом Вильсономмежду1910и1912гг. Принцип действия камеры использует явлениеконденсацииперенасыщенного пара: при появлении в среде перенасыщенного пара каких-либо центров конденсации (в частности, ионов, сопровождающих след быстрой заряженной частицы) на них образуются мелкие капли жидкости. Эти капли достигают значительных размеров и могут быть сфотографированы. Источник исследуемых частиц может располагаться либо внутри камеры, либо вне ее (в этом случае частицы залетают через прозрачное для них окно).

В 1927 г. советские физики П. Л. КапицаиД. В. Скобельцынпредложили помещать камеру в сильноемагнитное поле, искривляющеетреки, для исследования количественных характеристик частиц (например, массы и скорости) .

Камера Вильсона представляет собой ёмкость со стеклянной крышкой и поршнем в нижней части, заполненная насыщенными парами воды, спирта или эфира. Пары тщательно очищены от пыли, чтобы до пролёта частиц у молекул воды не было центров конденсации. Когда поршень опускается, то за счет адиабатического расширенияпары охлаждаются и становятся перенасыщенными. Заряженная частица, проходя сквозь камеру, оставляет на своем пути цепочку ионов. Пар конденсируется наионах, делая видимым след частицы.

Камера Вильсона сыграла огромную роль в изучении строения вещества. На протяжении нескольких десятилетий она оставалась практически единственным инструментом для визуального исследования ядерных излучений и исследования космических лучей:

    В 1930 году Л. В. МысовскийсР. А. Эйхельбергеромпроводили опыты срубидиеми в камере Вильсона было зарегистрировано испусканиеβ-частиц. Позже была открыта естественная радиоактивность изотопа 87 Rb.

    В 1934 году Л. В. МысовскийсМ. С. Эйгенсономпроводили эксперименты, в которых при помощи камеры Вильсона было доказано присутствиенейтроновв составекосмических лучей.

В 1927 годуВильсонполучил за свое изобретениеНобелевскую премию по физике. Впоследствии камера Вильсона в качестве основного средства исследования радиации уступила местопузырьковымиискровым камерам.

- 111.31 Кб

Введение 3

1 Радиоактивность 5

1.1 Типы радиоактивного распада и радиоактивного излучения 5

1.2 Закон радиоактивного распада 7

излучения 8

1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов 10

2 Методики анализа, основанные на измерении радиоактивности 12

2.1 Использование естественной радиоактивности в анализе 12

2.2 Активационный анализ 12

2.3 Метод изотопного разбавления 14

2.4 Радиометрическое титрование 14

3 Применение радиоактивности 18

3.1 Применение радиоактивных индикаторов в аналитической химии 18

3.2 Применение радиоактивных изотопов 22

Заключение 25

Список использованных источников 26

Введение

Методы анализа, основанные на радиоактивности, возникли в эпоху развития ядерной физики, радиохимии, атомной техники и с успехом применяются в настоящее время при проведении разнообразных анализов, в том числе в промышленности и геологической службе.

Основными достоинствами аналитических методов, основанных на измерении радиоактивного излучения, являются низкий порог обнаружения анализируемого элемента и широкая универсальность. Радиоактивационный анализ имеет абсолютно низший порог обнаружения среди всех других аналитических методов (10 -15 г). Достоинством некоторых радиометрических методик является анализ без разрушения образца, а методов, основанных на измерении естественной радиоактивности, - быстрота анализа. Ценная особенность радиометрического метода изотопного разведения заключена в возможности анализа смеси близких по химико-аналитическим свойствам элементов, таких, как цирконий - гафний, ниобий - тантал и др.

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Радиоактивные изотопы применяются в следующих методах анализа:

  1. метод осаждения в присутствии радиоактивного элемента;
  2. метод изотопного разбавления;
  3. радиометрическое титрование;
  4. активационный анализ;
  5. определения, основанные на измерении радиоактивности изотопов, встречающихся в природе.

В лабораторной практике радиометрическое титрование применяют сравнительно редко. Применение активационного анализа связано с использованием мощных источников тепловых нейтронов, и поэтому этот метод имеет пока ограниченное распространение.

В данной курсовой работе рассмотрены теоретические основы методов анализа, в которых используется явление радиоактивности, и их практическое применение.

1 Радиоактивность

1.1 Типы радиоактивного распада и радиоактивного излучения

Радиоактивность - это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.

Открытие радиоактивности относится к 1896г., когда А. Беккерель обнаружил, что уран самопроизвольно испускает излучение, названное им радиоактивным (от. radio – излучаю и activas – действенный).

Радиоактивное излучение возникает при самопроизвольном распаде атомного ядра. Известно несколько типов радиоактивного распада и радиоактивного
излучения.

Ra → Rn + He ;

U → Th + α (He).

В соответствии с законом радиоактивного смещения, при α-распаде получается атом, порядковый номер которого на две единицы, а атомная масса на четыре единицы меньше, чем у исходного атома.

2) β-Распад. Различают несколько видов β- распада: электронный β-распад; позитронный β-распад; К-захват. При электронном β-распаде, например,

Sn → Y + β - ;

P → S + β - .

нейтрон внутри ядра превращается в протон. При испускании отрицательно заряженной β-частицы порядковый номер элемента возрастает на единицу, а атомная масса практически не меняется.

При позитронном β-распаде из атомного ядра выделяется позитрон (β + -частица), а потом внутри ядра превращается в нейтрон. Например:

Na → Ne + β +

Продолжительность жизни позитрона невелика, так как при столкновении его с электроном происходит аннигиляция, сопровождающаяся испусканием γ-квантов.

При К-захвате ядро атома захватывает электрон из близлежащей электронной оболочки (из К-оболочки) и один из протонов ядра превращается в нейтрон.
Например,

K + e - = Ar + hv

На свободное место в К-оболочке переходит один из электронов внешней оболочки, что сопровождается испусканием жёсткого рентгеновского излучения.

3) Спонтанное деление. Оно характерно для элементов периодической системы Д. И. Менделеева с Z > 90. При спонтанном делении тяжёлые атомы делятся на осколки, которыми обычно являются элементы середины таблицы Л. И. Менделеева. Спонтанное деление и α-распад ограничивают получение новых трансурановых элементов.

Поток α и β-частиц называют соответственно α и β-излучением. Кроме того, известно γ-излучение. Это электромагнитные колебания с очень короткой длиной волны. В принципе, γ-излучение близко к жёсткому рентгеновскому и отличается от него своим внутриядерным происхождением. Рентгеновское излучение при переходах в электронной оболочке атома, а γ-излучение испускает возбуждённые атомы, получившиеся в результате радиоактивного распада (α и β).

В результате радиоактивного распада получаются элементы, которые по заряду ядер (порядковому номеру) должны быть помещены в уже занятые клетки периодической системы элементами с таким же порядковым номером, но другой атомной массой. Это так называемые изотопы. По химическим свойствам их принято считать неразличимыми, поэтому смесь изотопов обычно рассматривается как один элемент. Неизменность изотопного состава в подавляющем большинстве химических реакций иногда называют законом постоянства изотопного состава. Например, калий в природных соединениях представляет собой смесь изотопов, на 93,259% из 39 К, на 6,729% из 41 К и на 0,0119% из 40 К (К-захват и β-распад). Кальций насчитывает шесть стабильных изотопов с массовыми числами 40, 42, 43, 44, 46 и 48. В химико-аналитических и очень многих других реакциях это соотношение сохраняется практически неизменным, поэтому для разделения изотопов химической реакции обычно не применяются. Чаще всего для этой цели используются различные физические процессы – диффузия, дистилляция или электролиз.

Единицей активности изотопа является беккерель (Бк), равный активности нуклида в радиоактивном источнике, в котором за время 1с происходит один акт распада.

1.2 Закон радиоактивного распада

Радиоактивность, наблюдаемая у ядер, существующих в природных условиях, называется естественной, радиоактивность ядер, полученных посредством ядерных реакций, называется искусственной.

Между искусственной и естественной радиоактивностью нет принципиального различия. Процесс радиоактивного превращения в обоих случаях подчиняется одинаковым законам - закону радиоактивного превращения:

Если t = 0, то и, следовательно, const = -lg N 0 . Окончательно


где А – активность в момент времени t; А 0 – активность при t = 0.

Уравнения (1.3) и (1.4) характеризуют закон радиоактивного распада. В кинетике они известны как уравнения реакции первого порядка. В качестве характеристики скорости радиоактивного распада обычно указывают период полураспада T 1/2 , который так же, как и λ, является фундаментальной характеристикой процесса, не зависящей от количества вещества.

Периодом полураспада называют промежуток времени, в течение которого данное количество радиоактивного вещества уменьшается наполовину.

Период полураспада различных изотопов существенно различен. Он находится примерно от 10 10 лет до ничтожных долей секунды. Конечно, вещества, имеющие период полураспада 10 – 15 мин. и меньше, использовать в лаборатории трудно. Изотопы с очень большим периодом полураспада также нежелательны в лаборатории, так как при случайном загрязнении этими веществами окружающих предметов потребуется специальная работа по дезактивации помещения и приборов.

1.3 Взаимодействие радиоактивного излучения с веществом и счетчики

излучения

В результате взаимодействия радиоактивного излучения с веществом происходит ионизация и возбуждение атомов и молекул вещества, через которое оно проходит. Излучение производит также световое, фотографическое, химическое и биологическое действие. Радиоактивное излучение вызывает большое число химических реакций в газах, растворах, твердых веществах. Их обычно объединяют в группу радиационно-химических реакций. Сюда относятся, например, разложение (радиолиз) воды с образованием водорода, пероксида водорода и различных радикалов, вступающих в окислительно-восстановительные реакции с растворенными веществами.

Радиоактивное излучение вызывает разнообразные радиохимические превращения различных органических соединений – аминокислот, кислот, спиртов, эфиров и т.д. Интенсивное радиоактивное излучение вызывает свечение стеклянных трубок и ряд других эффектов в твердых телах. На изучении взаимодействия радиоактивного излучения с веществом основаны различные способы обнаружения и измерения радиоактивности.

В зависимости от принципа действия счетчики радиоактивных излучений подразделяют на несколько групп.

Ионизационные счетчики. Их действие основано на возникновении ионизации или газового разряда, вызванного ионизацией при попадании в счетчик радиоактивных частиц или γ-квантов. Среди десятков приборов, использующих ионизацию, типичными являются ионизационная камера и счетчик Гейгера – Мюллера, который получил наибольшее распространение в химико-аналитических и радиохимических лабораториях.

Для радиохимических и других лабораторий промышленностью выпускаются специальные счетные установки.

Сцинтилляционные счетчики. Действие этих счетчиков основано на возбуждении атомов сцинтиллятора γ-квантами или радиоактивной частицей, проходящей через счетчик. Возбужденные атомы, переходя в нормальное состояние, дают вспышку света.

В начальный период изучения ядерных процессов визуальный счет сцинтилляции сыграл большую роль, однако в дальнейшем он был вытеснен более совершенным счетчиком Гейгера – Мюллера. В настоящее время сцинтилляционный метод вновь стал широко применяться уже с использованием фотоумножителя.

Черенковские счетчики. Действие этих счетчиков основано на использовании эффекта Черенкова, который состоит в излучении света при движении заряженной частицы в прозрачном веществе, если скорость частиц превышает скорость света в данной среде. Факт сверхсветовой скорости частицы в данной среде, конечно, не противоречит теории относительности, поскольку скорость света в какой-либо среде всегда меньше, чем в вакууме. Скорость движения частицы в веществе может быть больше скорости света в этом веществе, оставаясь в то же время меньше скорости света в вакууме в полном соответствии с теорией относительности. Счетчики Черенкова применяются для исследовательских работ с очень быстрыми частицами, для исследований в космосе и т.д., поскольку с их помощью может быть определен ряд других важных характеристик частиц (их энергия, направление движения и др.).

1.4 Классификация источников радиоактивного излучения и

радиоактивных изотопов

Источники радиоактивного излучения делят на закрытые и открытые. Закрытые – должны быть герметичны. Открытые – любые негерметичные источники излучения, которые могут создавать радиоактивное загрязнение воздуха, аппаратуры, поверхностей столов, стен и т. п.

При работе с закрытыми источниками необходимые меры предосторожности сводятся к предохранению от внешнего облучения.

Закрытые источники излучения активностью выше 0,2 г-экв. радия должны быть помещены в защитные устройства с дистанционным управлением и устанавливаться в специально оборудованных помещениях.

Краткое описание

Дополнительные осложнения в работе с радиоактивными препаратами обусловлены токсичными свойствами радиоактивного излучения, которые не вызывают немедленной реакции организма и тем самым осложняют своевременное применение необходимых мер. Это усиливает необходимость строгого соблюдения техники безопасности при работе с радиоактивными препаратами. В необходимых случаях работа с радиоактивными веществами происходит с помощью так называемых манипуляторов в специальных камерах, а сам аналитик остается в другом помещении, надежно защищенном от действия радиоактивного излучения.

Содержание

Введение 3
1 Радиоактивность 5
1.1 Типы радиоактивного распада и радиоактивного излучения 5
1.2 Закон радиоактивного распада 7
1.3 Взаимодействие радиоактивного излучения с веществом и счетчики
излучения 8
1.4 Классификация источников радиоактивного излучения и радиоактивных изотопов 10
2 Методики анализа, основанные на измерении радиоактивности 12
2.1 Использование естественной радиоактивности в анализе 12
2.2 Активационный анализ 12
2.3 Метод изотопного разбавления 14
2.4 Радиометрическое титрование 14
3 Применение радиоактивности 18
3.1 Применение радиоактивных индикаторов в аналитической химии 18
3.2 Применение радиоактивных изотопов 22
Заключение 25
Список использованных источников 26



Похожие статьи