Как записать значение выражения. Числовые и алгебраические выражения

Формула

Сложение, вычитание, умножение, деление - арифметические действия (или арифметические операции ). Этим арифметическим действиям соответствуют знаки арифметических действий:

+ (читаем "плюс ") - знак операции сложения,

- (читаем "минус ") - знак операции вычитания,

(читаем "умножить ") - знак операции умножения,

: (читаем "разделить ") - знак операции деления.

Запись, состоящая из чисел, связанных между собой знаками арифметических действий, называется числовым выражением. В числовом выражении могут присутствовать также скобки Например, запись 1290 : 2 - (3 + 20 ∙ 15) является числовым выражением.

Результат выполнения действий над числами в числовом выражении называется значением числового выражения . Выполнение этих действий называется вычислением значения числового выражения. Перед записью значения числового выражения ставят знак равенства «=». В таблице 1 приведены примеры числовых выражений и их значений.

Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий называется буквенным выражением . В этой записи могут присутствовать скобки. Например, запись a + b - 3 ∙ c является буквенным выражением. Вместо букв в буквенное выражение можно подставлять различные числа. При этом значение букв может изменяться, поэтому буквы в буквенном выражении называют еще переменными .

Подставив в буквенное выражение числа вместо букв и вычислив значение получившегося числового выражения, находят значение буквенного выражения при данных значениях букв (при данных значениях переменных). В таблице 2 приведены примеры буквенных выражений.

Буквенное выражение может не иметь значения, если при подстановке значений букв получается числовое выражение, значение которого для натуральных чисел не может быть найдено. Такое числовое выражение называется некорректным для натуральных чисел. Говорят также, что значение такого выражения «не определено» для натуральных чисел, а само выражение «не имеет смысла» . Например, буквенное выражение a - b не имеет значения при a = 10 и b = 17. Действительно, для натуральных чисел, уменьшаемое не может быть меньше вычитаемого. Например, имея всего 10 яблок (a = 10), нельзя отдать из них 17 (b = 17)!

В таблице 2 (колонка 2) приведён пример буквенного выражения. По аналогии заполните таблицу полностью.

Для натуральных чисел выражение 10 -17 некорректно (не имеет смысла) , т.е. разность 10 -17 не может быть выражена натуральным числом. Другой пример: на ноль делить нельзя, поэтому для любого натурального числа b, частное b: 0 не определено.

Математические законы, свойства, некоторые правила и соотношения часто записывают в буквенном виде (т.е. в виде буквенного выражения). В этих случаях буквенное выражение называют формулой . Например, если стороны семиугольника равны a, b, c, d, e, f, g , то формула (буквенное выражение) для вычисления его периметра p имеет вид:


p = a + b + c + d + e + f + g

При a = 1, b = 2, c = 4, d = 5, e = 5, f = 7, g = 9, периметр семиугольника p = a + b + c + d + e + f + g = 1 + 2 + 4 + 5 +5 + 7 + 9 = 33.

При a = 12, b = 5, c = 20, d = 35, e = 4, f = 40, g = 18, периметр другого семиугольника p = a + b + c + d + e + f + g = 12 + 5 + 20 + 35 + 4 + 40 + 18 = 134.

Блок 1. Словарь

Составьте словарь новых терминов и определений из параграфа. Для этого в пустые клетки впишите слова из списка терминов, приведенного ниже. В таблице (в конце блока) укажите номера терминов в соответствии с номерами рамок. Рекомендуется перед заполнением клеток словаря еще раз внимательно просмотреть параграф.

  1. Операции: сложение, вычитание, умножение, деление.

2.Знаки «+» (плюс), «-» (минус), «∙» (умножить, «: » (разделить).

3.Запись, состоящая из чисел, которые связанны между собой знаками арифметических действий и в которой могут присутствовать также скобки.

4.Результат выполнения действий над числами в числовом выражении.

5. Знак, стоящий перед значением числового выражения.

6. Запись, состоящая из чисел и малых букв латинского алфавита, связанных между собой знаками арифметических действий (могут присутствовать также скобки).

7. Общее название букв в буквенном выражении.

8. Значение числового выражения, которое получается при подстановке переменных.в буквенное выражение.

9.Числовое выражение, значение которого для натуральных чисел не может быть найдено.

10. Числовое выражение, значение которого для натуральных чисел может быть найдено.

11. Математические законы, свойства, некоторые правила и соотношения, записанные в буквенном виде.

12. Алфавит, малые буквы которого используются для записи буквенных выражений.

Блок 2. Установите соответствие

Установите соответствие между заданием в левой колонке и решением в правой. Ответ запишите в виде: 1а, 2г, 3б…

Блок 3. Фасетный тест. Числовые и буквенные выражения

Фасетные тесты заменяют сборники задач по математике, но выгодно отличаются от них тем, что их можно решать на компьютере, проверять решения и сразу узнавать результат работы. В этом тесте содержится 70 задач. Но решать задачи можно по выбору, для этого есть оценочная таблица, где указаны простые задачи и посложнее. Ниже приведён тест.

  1. Дан треугольник со сторонами c, d, m, выраженными в см
  2. Дан четырехугольник со сторонами b, c, d, m , выраженными в м
  3. Скорость автомобиля в км/ч равна b, время движения в часах равно d
  4. Расстояние, которое преодолел турист за m часов, составляет с км
  5. Расстояние, которое преодолел турист, двигаясь со скоростью m км/ч, составляет b км
  6. Сумма двух чисел больше второго числа на 15
  7. Разность меньше уменьшаемого на 7
  8. Пассажирский лайнер имеет две палубы с одинаковым количеством пассажирских мест. В каждом из рядов палубы m мест, рядов на палубе на n больше, чем мест в ряду
  9. Пете m лет Маше n лет, а Кате на k лет меньше, чем Пете и Маше вместе
  10. m = 8, n = 10, k = 5
  11. m = 6, n = 8, k = 15
  12. t = 121, x = 1458

  1. Значение данного выражения
  2. Буквенное выражение для периметра имеет вид
  3. Периметр, выраженный в сантиметрах
  4. Формула пути s, пройденного автомобилем
  5. Формула скорости v, движения туриста
  6. Формула времени t, движения туриста
  7. Путь, пройденный автомобилем в километрах
  8. Скорость туриста в километрах в час
  9. Время движения туриста в часах
  10. Первое число равно…
  11. Вычитаемое равно….
  12. Выражение для наибольшего количества пассажиров, которое может перевезти лайнер за k рейсов
  13. Наибольшее количество пассажиров, которое может перевезти лайнер за k рейсов
  14. Буквенное выражение для возраста Кати
  15. Возраст Кати
  16. Координата точки В, если координата точки С равна t
  17. Координата точки D, если координата точки С равна t
  18. Координата точки А, если координата точки С равна t
  19. Длина отрезка BD на числовом луче
  20. Длина отрезка CА на числовом луче
  21. Длина отрезка DА на числовом луче

В данной статье рассмотрено, как находить значения математических выражений. Начнем с простых числовых выражений и далее будем рассматривать случаи по мере возрастания их сложности. В конце приведем выражение, содержащее буквенные обозначения, скобки, корни, специальные математические знаки, степени, функции и т.д. Всю теорию, по традиции, снабдим обильными и подробными примерами.

Yandex.RTB R-A-339285-1

Как найти значение числового выражения?

Числовые выражения, помимо прочего, помогают описывать условие задачи математическим языком. Вообще математические выражения могут быть как очень простыми, состоящими из пары чисел и арифметических знаков, так и очень сложными, содержащими функции, степени, корни, скобки и т.д. В рамках задачи часто необходимо найти значение того или иного выражения. О том, как это делать, и пойдет речь ниже.

Простейшие случаи

Это случаи, когда выражение не содержит ничего, кроме чисел и арифметических действий. Для успешного нахождения значений таких выражений понадобятся знания порядка выполнения арифметических действий без скобок, а также умение выполнять действия с различными числами.

Если в выражении есть только числа и арифметические знаки " + " , " · " , " - " , " ÷ " , то действия выполняются слева направо в следующем порядке: сначала умножение и деление, затем сложение и вычитание. Приведем примеры.

Пример 1. Значение числового выражения

Пусть нужно найти значения выражения 14 - 2 · 15 ÷ 6 - 3 .

Выполним сначала умножение и деление. Получаем:

14 - 2 · 15 ÷ 6 - 3 = 14 - 30 ÷ 6 - 3 = 14 - 5 - 3 .

Теперь проводим вычитание и получаем окончательный результат:

14 - 5 - 3 = 9 - 3 = 6 .

Пример 2. Значение числового выражения

Вычислим: 0 , 5 - 2 · - 7 + 2 3 ÷ 2 3 4 · 11 12 .

Сначала выполняем преобразование дробей, деление и умножение:

0 , 5 - 2 · - 7 + 2 3 ÷ 2 3 4 · 11 12 = 1 2 - (- 14) + 2 3 ÷ 11 4 · 11 12

1 2 - (- 14) + 2 3 ÷ 11 4 · 11 12 = 1 2 - (- 14) + 2 3 · 4 11 · 11 12 = 1 2 - (- 14) + 2 9 .

Теперь займемся сложением и вычитанием. Сгруппируем дроби и приведем их к общему знаменателю:

1 2 - (- 14) + 2 9 = 1 2 + 14 + 2 9 = 14 + 13 18 = 14 13 18 .

Искомое значение найдено.

Выражения со скобками

Если выражение содержит скобки, то они определяют порядок действий в этом выражении. Сначала выполняются действия в скобках, а потом уже все остальные. Покажем это на примере.

Пример 3. Значение числового выражения

Найдем значение выражения 0 , 5 · (0 , 76 - 0 , 06) .

В выражении присутствуют скобки, поэтому сначала выполняем операцию вычитания в скобках, а уже потом - умножение.

0 , 5 · (0 , 76 - 0 , 06) = 0 , 5 · 0 , 7 = 0 , 35 .

Значение выражений, содержащих скобки в скобках, находится по такому же принципу.

Пример 4. Значение числового выражения

Вычислим значение 1 + 2 · 1 + 2 · 1 + 2 · 1 - 1 4 .

Выполнять действия будем начиная с самых внутренних скобок, переходя к внешним.

1 + 2 · 1 + 2 · 1 + 2 · 1 - 1 4 = 1 + 2 · 1 + 2 · 1 + 2 · 3 4

1 + 2 · 1 + 2 · 1 + 2 · 3 4 = 1 + 2 · 1 + 2 · 2 , 5 = 1 + 2 · 6 = 13 .

В нахождении значений выражений со скобками главное - соблюдать последовательность действий.

Выражения с корнями

Математические выражения, значения которых нам нужно найти, могут содержать знаки корня. Причем, само выражение может быть под знаком корня. Как быть в таком случае? Сначала нужно найти значение выражения под корнем, а затем извлечь корень из числа, полученного в результате. По возможности от корней в числовых выражениях нужно лучше избавляться, заменяя из на числовые значения.

Пример 5. Значение числового выражения

Вычислим значение выражения с корнями - 2 · 3 - 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 .

Сначала вычисляем подкоренные выражения.

2 · 3 - 1 + 60 ÷ 4 3 = - 6 - 1 + 15 3 = 8 3 = 2

2 , 2 + 0 , 1 · 0 , 5 = 2 , 2 + 0 , 05 = 2 , 25 = 1 , 5 .

Теперь можно вычислить значение всего выражения.

2 · 3 - 1 + 60 ÷ 4 3 + 3 · 2 , 2 + 0 , 1 · 0 , 5 = 2 + 3 · 1 , 5 = 6 , 5

Часто найти значение выражения с корнями часто нужно сначала провести преобразование исходного выражения. Поясним это на еще одном примере.

Пример 6. Значение числового выражения

Сколько будет 3 + 1 3 - 1 - 1

Как видим, у нас нет возможности заменить корень точным значением, что усложняет процесс счета. Однако, в данном случае можно применить формулу сокращенного умножения.

3 + 1 3 - 1 = 3 - 1 .

Таким образом:

3 + 1 3 - 1 - 1 = 3 - 1 - 1 = 1 .

Выражения со степенями

Если в выражении имеются степени, их значения нужно вычислить прежде, чем приступать ко всем остальным действиям. Бывает так, что сам показатель или основание степени являются выражениями. В таком случае, сначала вычисляют значение этих выражений, а затем уже значение степени.

Пример 7. Значение числового выражения

Найдем значение выражения 2 3 · 4 - 10 + 16 1 - 1 2 3 , 5 - 2 · 1 4 .

Начинаем вычислять по порядку.

2 3 · 4 - 10 = 2 12 - 10 = 2 2 = 4

16 · 1 - 1 2 3 , 5 - 2 · 1 4 = 16 * 0 , 5 3 = 16 · 1 8 = 2 .

Осталось только провести операцию сложение и узнать значение выражения:

2 3 · 4 - 10 + 16 1 - 1 2 3 , 5 - 2 · 1 4 = 4 + 2 = 6 .

Также часто целесообразно бывает провести упрощение выражения с использованием свойств степени.

Пример 8. Значение числового выражения

Вычислим значение следующего выражения: 2 - 2 5 · 4 5 - 1 + 3 1 3 6 .

Показатели степеней опять таковы, что их точные числовые значения получить не удастся. Упростим исходное выражение, чтобы найти его значение.

2 - 2 5 · 4 5 - 1 + 3 1 3 6 = 2 - 2 5 · 2 2 5 - 1 + 3 1 3 · 6

2 - 2 5 · 2 2 5 - 1 + 3 1 3 · 6 = 2 - 2 5 · 2 2 · 5 - 2 + 3 2 = 2 2 · 5 - 2 - 2 5 + 3 2

2 2 · 5 - 2 - 2 5 + 3 2 = 2 - 2 + 3 = 1 4 + 3 = 3 1 4

Выражения с дробями

Если выражение содержит дроби, то при вычислении такого выражения все дроби в нем нужно представить в виде обыкновенных дробей и вычислить их значения.

Если в числителе и знаменателе дроби присутствуют выражения, то сначала вычисляются значения этих выражений, и записывается финальное значение самой дроби. Арифметические действия выполняются в стандартном порядке. Рассмотрим решение примера.

Пример 9. Значение числового выражения

Найдем значение выражения, содержащего дроби: 3 , 2 2 - 3 · 7 - 2 · 3 6 ÷ 1 + 2 + 3 9 - 6 ÷ 2 .

Как видим, в исходном выражении есть три дроби. Вычислим сначала их значения.

3 , 2 2 = 3 , 2 ÷ 2 = 1 , 6

7 - 2 · 3 6 = 7 - 6 6 = 1 6

1 + 2 + 3 9 - 6 ÷ 2 = 1 + 2 + 3 9 - 3 = 6 6 = 1 .

Перепишем наше выражение и вычислим его значение:

1 , 6 - 3 · 1 6 ÷ 1 = 1 , 6 - 0 , 5 ÷ 1 = 1 , 1

Часто при нахождении значений выражений удобно бывает проводить сокращение дробей. Существует негласное правило: любое выражение перед нахождением его значения лучше всего упростить по максимуму, сводя все вычисления к простейшим случаям.

Пример 10. Значение числового выражения

Вычислим выражение 2 5 - 1 - 2 5 - 7 4 - 3 .

Мы не можем нацело извлечь корень из пяти, однако можем упростить исходное выражение путем преобразований.

2 5 - 1 = 2 5 + 1 5 - 1 5 + 1 = 2 5 + 1 5 - 1 = 2 5 + 2 4

Исходное выражение принимает вид:

2 5 - 1 - 2 5 - 7 4 - 3 = 2 5 + 2 4 - 2 5 - 7 4 - 3 .

Вычислим значение этого выражения:

2 5 + 2 4 - 2 5 - 7 4 - 3 = 2 5 + 2 - 2 5 + 7 4 - 3 = 9 4 - 3 = - 3 4 .

Выражения с логарифмами

Когда в выражении присутствуют логарифмы, их значение, если это возможно, вычисляется с самого начала. К примеру, в выражении log 2 4 + 2 · 4 можно сразу вместо log 2 4 записать значение этого логарифма, а потом выполнить все действия. Получим: log 2 4 + 2 · 4 = 2 + 2 · 4 = 2 + 8 = 10 .

Под самим знаком логарифма и в его основании также могут находится числовые выражения. В таком случае, первым делом находятся их значения. Возьмем выражение log 5 - 6 ÷ 3 5 2 + 2 + 7 . Имеем:

log 5 - 6 ÷ 3 5 2 + 2 + 7 = log 3 27 + 7 = 3 + 7 = 10 .

Если же вычислить точное значение логарифма невозможно, упрощение выражения помогает найти его значение.

Пример 11. Значение числового выражения

Найдем значение выражения log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 .

log 2 log 2 256 = log 2 8 = 3 .

По свойству логарифмов:

log 6 2 + log 6 3 = log 6 (2 · 3) = log 6 6 = 1 .

Вновь применяя свойства логарифмов, для последней дроби в выражении получим:

log 5 729 log 0 , 2 27 = log 5 729 log 1 5 27 = log 5 729 - log 5 27 = - log 27 729 = - log 27 27 2 = - 2 .

Теперь можно переходить к вычислению значения исходного выражения.

log 2 log 2 256 + log 6 2 + log 6 3 + log 5 729 log 0 , 2 27 = 3 + 1 + - 2 = 2 .

Выражения с тригонометрическими функциями

Бывает, что в выражении есть тригонометрические функции синуса, косинуса, тангенса и котангенса, а также функции, обратные им. Из значения вычисляются перед выполнением всех остальных арифметических действий. В противном случае, выражение упрощается.

Пример 12. Значение числового выражения

Найдите значение выражения: t g 2 4 π 3 - sin - 5 π 2 + cosπ .

Сначала вычисляем значения тригонометрических функций, входящих в выражение.

sin - 5 π 2 = - 1

Подставляем значения в выражение и вычисляем его значение:

t g 2 4 π 3 - sin - 5 π 2 + cosπ = 3 2 - (- 1) + (- 1) = 3 + 1 - 1 = 3 .

Значение выражения найдено.

Часто для того, чтобы найти значение выражения с тригонометрическими функциями, его предварительно нужно преобразовать. Поясним на примере.

Пример 13. Значение числового выражения

Нужно найти значение выражения cos 2 π 8 - sin 2 π 8 cos 5 π 36 cos π 9 - sin 5 π 36 sin π 9 - 1 .

Для преобразования будем использовать тригонометрические формулы косинуса двойного угла и косинуса суммы.

cos 2 π 8 - sin 2 π 8 cos 5 π 36 cos π 9 - sin 5 π 36 sin π 9 - 1 = cos 2 π 8 cos 5 π 36 + π 9 - 1 = cos π 4 cos π 4 - 1 = 1 - 1 = 0 .

Общий случай числового выражения

В общем случае тригонометрическое выражение может содержать все вышеописанные элементы: скобки, степени, корни, логарифмы, функции. Сформулируем общее правило нахождения значений таких выражений.

Как найти значение выражения

  1. Корни, степени, логарифмы и т.д. заменяются их значениями.
  2. Выполняются действия в скобках.
  3. Оставшиеся действия выполняются по порядку слева направо. Сначала - умножение и деление, затем - сложение и вычитание.

Разберем пример.

Пример 14. Значение числового выражения

Вычислим, чему равно значение выражения - 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 .

Выражение довольно сложное и громоздкое. Мы не случайно выбрали именно такой пример, постаравшись уместить в него все описанные выше случаи. Как найти значение такого выражения?

Известно, что при вычислении значения сложного дробного вида, сначала отдельно находятся значения числителя и знаменателя дроби соответственно. Будем последовательно преобразовывать и упрощать данное выражение.

Первым делом вычислим значение подкоренного выражения 2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 . Чтобы сделать это, нужно найти значение синуса, и выражения, которое является аргументом тригонометрической функции.

π 6 + 2 · 2 π 5 + 3 π 5 = π 6 + 2 · 2 π + 3 π 5 = π 6 + 2 · 5 π 5 = π 6 + 2 π

Теперь можно узнать значение синуса:

sin π 6 + 2 · 2 π 5 + 3 π 5 = sin π 6 + 2 π = sin π 6 = 1 2 .

Вычисляем значение подкоренного выражения:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 2 · 1 2 + 3 = 4

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 = 4 = 2 .

Со знаменателем дроби все проще:

Теперь мы можем записать значение всей дроби:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 = 2 2 = 1 .

С учетом этого, запишем все выражение:

1 + 1 + 3 9 = - 1 + 1 + 3 3 = - 1 + 1 + 27 = 27 .

Окончательный результат:

2 · sin π 6 + 2 · 2 π 5 + 3 π 5 + 3 ln e 2 + 1 + 3 9 = 27 .

В данном случае мы смогли вычислить точные значения корней, логарифмов, синусов и т.д. Если такой возможности нет, можно попробовать избавиться от них путем математических преобразований.

Вычисление значений выражений рациональными способами

Вычислять значения числовых нужно последовательно и аккуратно. Данный процесс можно рационализировать и ускорить, используя различные свойства действий с числами. К примеру, известно, что произведение равно нулю, если нулю равен хотя бы один из множителей. С учетом этого свойства, можно сразу сказать, что выражение 2 · 386 + 5 + 589 4 1 - sin 3 π 4 · 0 равно нулю. При этом, вовсе не обязательно выполнять действия по порядку, описанному в статье выше.

Также удобно использовать свойство вычитания равных чисел. Не выполняя никаких действий, можно заказать, что значение выражения 56 + 8 - 3 , 789 ln e 2 - 56 + 8 - 3 , 789 ln e 2 также равно нулю.

Еще один прием, позволяющий ускорить процесс - использование тождественных преобразований таких как группировка слагаемых и множителей и вынесение общего множителя за скобки. Рациональный подход к вычислению выражений с дробями - сокращение одинаковых выражений в числителе и знаменателе.

Например, возьмем выражение 2 3 - 1 5 + 3 · 289 · 3 4 3 · 2 3 - 1 5 + 3 · 289 · 3 4 . Не выполняя действий в скобках, а сокращая дробь, можно сказать, что значение выражения равно 1 3 .

Нахождение значений выражений с переменными

Значение буквенного выражения и выражения с переменными находится для конкретных заданных значений букв и переменных.

Нахождение значений выражений с переменными

Чтобы найти значение буквенного выражения и выражения с переменными, нужно в исходное выражение подставить заданные значения букв и переменных, после чего вычислить значение полученного числового выражения.

Пример 15. Значение выражения с переменными

Вычислить значение выражения 0 , 5 x - y при заданных x = 2 , 4 и y = 5 .

Подставляем значения переменных в выражение и вычисляем:

0 , 5 x - y = 0 , 5 · 2 , 4 - 5 = 1 , 2 - 5 = - 3 , 8 .

Иногда можно так преобразовать выражение, чтобы получить его значение независимо от значений входящих в него букв и переменных. Для этого от букв и переменных в выражении нужно по возможности избавиться, используя тождественные преобразования, свойства арифметических действий и все возможные другие способы.

Например, выражение х + 3 - х, очевидно, имеет значение 3 , и для вычисления этого значения совсем необязательно знать значение переменной икс. Значение данного выражения равно трем для всех значений переменной икс из ее области допустимых значений.

Еще один пример. Значение выражения x x равно единице для всех положительных иксов.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Как найти периметр прямоугольника, стороны которого равны 3 см и 5 см (рис. 67 )?

Отвечая на этот вопрос, вы можете сделать такую запись: 2 * 3 + 2 * 5 .

Такая запись представляет собой числовое выражение .

Приведем еще несколько примеров числовых выражений: 12 : 4 − 1, (5 + 17 ) + 11, (19 − 7 ) * 3 . Эти выражения составлены из чисел, знаков арифметических действия и скобок.

Заметим, что не всякая запись, составленная из чисел, знаков арифметических действия и скобок является числовым выражением. Например, запись +) +3 − (2 представляет собой бессмысленный набор символов.

Завершив решение задачи о периметре прямоугольника, получим ответ 16 см. В таких случаях говорят, что число 16 является значением выражения 2 * 3 + 2 * 5 .

А чему равен периметр прямоугольника, стороны которого равны 3 см и a см? Ответом будет выражение 2 * 3 + 2 * a.

Запись 2 * 3 + 2 * a представляет собой буквенное выражение .

Приведем еще несколько примеров буквенных выражений: (a + b) + 11, 5 + 3 * x, n: 2 − k * 5 . Эти выражения составлены из чисел, букв, знаков арифметических действий и скобок.

Как правило, в буквенных выражениях знак умножения пишут только между числами. В остальных случаях его опускают. Например, вместо 5 * y, m * n, 2 * (a + b) соответственно пишут 5 y, mn, 2 (a + b).

Пусть стороны прямоугольника равны a см и b см. В этом случае буквенное выражение для нахождения его периметра выглядит так: 2 a + 2 b.

Подставим в это выражение вместо букв a и b соответственно числа 3 и 5 . Получим числовое выражение 2 * 3 + 2 * 5, которое мы уже записывали для нахождения периметра прямоугольника. Если же вместо a и b подставить, например, числа 4 и 9, то получим числовое выражение 2 * 4 + 2 * 9 . Вообще, из одного буквенного выражения можно получить бесконечно много числовых выражений.

Обозначим периметр прямоугольника буквой P. Тогда равенство

P = 2 a + 2 b

можно использовать для нахождения периметра любого прямоугольника. Такие равенства называют формулами .

Например, если сторона квадрата равна a, то его периметр вычисляется по формуле:

P = 4 a

Равенство

s = vt

где s − пройденный путь, v − скорость движения, а t − время, за которое пройден путь s, называют формулой пути .

Пример 1 . Собранные в саду яблоки фермер разложил в пять ящиков по a кг и в b ящиков по 20 кг. Скоько килограммов яблок собрал фермер? Вычислите значение полученного выражения при a = 18, b = 9 .

В пяти ящиках содержится 5 a кг яблок, а в b ящиках − 20 b кг. Всего фермер собрал (5 a + 20 b) кг яблок.

Если a = 18, b = 9, то получаем: 5 * 18 + 20 * 9 = 90 + 180 = 270 (кг).

Ответ: (5 a + 20 b) кг, 270 кг.

Пример 2 . Найдите, ползуясь формулой пути, скорость, с которой поезд прошел 324 км за 6 ч.

Поскольку s = vt, то v = s: t. Тогда можно записать v = 324 : 6 = 54 (км/ч).

Ответ: 54 км/ч.

Пример 3 . Буратино купил m булочек по 2 сольдо и торт за 5 сольдо. Составим формулу для вычисления стоимости покупки и найдите эту стоимость, если:

1 ) m = 4 ;

2 ) m = 12 .

За m булочек Буратино заплатил 2 m сольдо.

Обозначив стоимость покупки буквой k, получаем формулу k = 2 m + 5 .

1 ) Если m = 4, то k = 2 * 4 + 5 = 13 ;

2 ) если m = 12, то k = 2 * 12 + 5 = 29 .

Ответ: k = 2 m + 5, 13 сольдо, 29 сольдо.


Запись условий задач с помощью принятых в математике обозначений приводит к появлению так называемых математических выражений, которые называют просто выражениями. В этой статье мы подробно поговорим про числовые, буквенные выражения и выражения с переменными : дадим определения и приведем примеры выражений каждого вида.

Навигация по странице.

Числовые выражения – что это?

Знакомство с числовыми выражениями начинается чуть ли не с самых первых уроков математики. Но свое имя – числовые выражения – они официально приобретают немного позже. Например, если следовать курсу М. И. Моро, то это происходит на страницах учебника математики для 2 классов. Там представление о числовых выражениях дается так: 3+5 , 12+1−6 , 18−(4+6) , 1+1+1+1+1 и т.п. – это все числовые выражения , а если в выражении выполнить указанные действия, то найдем значение выражения .

Можно сделать вывод, что на этом этапе изучения математики числовыми выражениями называют имеющие математический смысл записи, составленные из чисел, скобок и знаков сложения и вычитания.

Чуть позже, после знакомства с умножением и делением, записи числовых выражений начинают содержать знаки «·» и «:». Приведем несколько примеров: 6·4 , (2+5)·2 , 6:2 , (9·3):3 и т.п.

А в старших классах разнообразие записей числовых выражений разрастается как снежный ком, катящийся с горы. В них появляются обыкновенные и десятичные дроби, смешанные числа и отрицательные числа, степени, корни, логарифмы, синусы, косинусы и так далее.

Обобщим всю информацию в определение числового выражения:

Определение.

Числовое выражение - это комбинация чисел, знаков арифметических действий, дробных черт, знаков корня (радикалов), логарифмов, обозначений тригонометрических, обратных тригонометрических и других функций, а также скобок и других специальных математических символов, составленная в соответствии с принятыми в математике правилами.

Разъясним все составные части озвученного определения.

В числовых выражениях могут участвовать абсолютно любые числа: от натуральных до действительных, и даже комплексных. То есть, в числовых выражениях можно встретить

Со знаками арифметических действий все понятно – это знаки сложения, вычитания, умножения и деления, имеющие соответственно вид «+», «−» , «·» и «:». В числовых выражениях может присутствовать один из этих знаков, некоторые из них или все сразу, и причем по нескольку раз. Вот примеры числовых выражений с ними: 3+6 , 2,2+3,3+4,4+5,5 , 41−2·4:2−5+12·3·2:2:3:12−1/12 .

Что касается скобок , то имеют место как числовые выражения, в которых есть скобки, так и выражения без них. Если в числовом выражении есть скобки, то они в основном

А иногда скобки в числовых выражениях имеют какое-нибудь определенное отдельно указанное специальное предназначение. К примеру, можно встретить квадратные скобки, обозначающие целую часть числа, так числовое выражение +2 обозначает, что к целой части числа 1,75 прибавляется число 2 .

Из определения числового выражения также видно, что в выражении могут присутствовать , , log , ln , lg , обозначения или и т.п. Вот примеры числовых выражений с ними: tgπ , arcsin1+arccos1−π/2 и .

Деление в числовых выражениях может быть обозначено с помощью . В этом случае имеют место числовые выражения с дробями. Приведем примеры таких выражений: 1/(1+2) , 5+(2·3+1)/(7−2,2)+3 и .

В качестве специальных математических символов и обозначений, которые можно встретить в числовых выражениях, приведем . Для примера покажем числовое выражение с модулем .

Что такое буквенные выражения?

Понятие буквенных выражений дается практически сразу после знакомства с числовыми выражениями. Вводится оно примерно так. В некотором числовом выражении одно из чисел не записывается, а вместо него ставится кружочек (или квадратик, или нечто подобное), и говорится, что вместо кружочка можно подставить некоторое число. Для примера приведем запись . Если вместо квадратика поставить, например, число 2 , то получится числовое выражение 3+2 . Так вот вместо кружочков, квадратиков и т.п. условились записывать буквы, а такие выражения с буквами назвали буквенными выражениями . Вернемся к нашему примеру , если в этой записи вместо квадратика поставить букву a , то получится буквенное выражение вида 3+a .

Итак, если допустить в числовом выражении присутствие букв, которыми обозначены некоторые числа, то получится так называемое буквенное выражение. Дадим соответствующее определение.

Определение.

Выражение, содержащее буквы, которыми обозначены некоторые числа, называется буквенным выражением .

Из данного определения понятно, что принципиально буквенное выражение отличается от числового выражения тем, что может содержать буквы. Обычно в буквенных выражениях используются маленькие буквы латинского алфавита (a, b, c, … ), а при обозначении углов – маленькие буквы греческого алфавита (α, β, γ, … ).

Итак, буквенные выражения могут быть составлены из чисел, букв и содержать все математические символы, которые могут встречаться в числовых выражениях, такие как скобки, знаки корней, логарифмы, тригонометрические и другие функции и т.п. Отдельно подчеркнем, что буквенное выражение содержит по крайней мере одну букву. Но может содержать и несколько одинаковых или различных букв.

Теперь приведем несколько примеров буквенных выражений. Например, a+b – это буквенное выражение с буквами a и b . Вот другой пример буквенного выражения 5·x 3 −3·x 2 +x−2,5 . И приведем пример буквенного выражения сложного вида: .

Выражения с переменными

Если в буквенном выражении буква обозначает величину, которая принимает не какое-то одно конкретное значение, а может принимать различные значения, то эту букву называют переменной и выражение называют выражением с переменной .

Определение.

Выражение с переменными – это буквенное выражение, в котором буквы (все или некоторые) обозначают величины, принимающие различные значения.

Например, пусть в выражении x 2 −1 буква x может принимать любые натуральные значения из интервала от 0 до 10 , тогда x – есть переменная, а выражение x 2 −1 есть выражение с переменной x .

Стоит отметить, что переменных в выражении может быть несколько. К примеру, если считать x и y переменными, то выражение является выражением с двумя переменными x и y .

Вообще, переход от понятия буквенного выражения к выражению с переменными происходит в 7 классе, когда начинают изучать алгебру. До этого момента буквенные выражения моделировали какие-то конкретные задачи. В алгебре же начинают смотреть на выражение более общо, без привязки к конкретной задаче, с пониманием того, что данное выражение подходит под огромное число задач.

В заключение этого пункта обратим внимание еще на один момент: по внешнему виду буквенного выражения невозможно узнать, являются ли входящие в него буквы переменными или нет. Поэтому ничто нам не мешает считать эти буквы переменными. При этом разница между терминами «буквенное выражение» и «выражение с переменными» исчезает.

Список литературы.

  • Математика . 2 кл. Учеб. для общеобразоват. учреждений с прил. на электрон. носителе. В 2 ч. Ч. 1 / [М. И. Моро, М. А. Бантова, Г. В. Бельтюкова и др.] - 3-е изд. - М.: Просведение, 2012. - 96 с.: ил. - (Школа России). - ISBN 978-5-09-028297-0.
  • Математика : учеб. для 5 кл. общеобразоват. учреждений / Н. Я. Виленкин, В. И. Жохов, А. С. Чесноков, С. И. Шварцбурд. - 21-е изд., стер. - М.: Мнемозина, 2007. - 280 с.: ил. ISBN 5-346-00699-0.
  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.

Понятие математического выражения (или просто выражения), изучаемое в начальных классах, имеет важное значение. Так, это понятие помогает учащимся овладеть вычислительными навыками. Действительно, часто вычислительные ошибки связаны с непониманием структуры выражений, нетвердым знанием порядка выполнения действий в выражениях. Усвоение понятия выражения обуславливает формирование таких важных математических понятий, как равенство, неравенство, уравнение. Умение составлять выражения по задаче необходимо для овладения умения решать задачи алгебраическим способом, т.е. с помощью составления уравнений.

С первыми выражениями – суммой и разностью – дети знакомятся при изучении сложения и вычитания в концентре «Десяток». Не используя специальных терминов, первоклассники производят вычисления, записывают выражения, читают их, заменяют число суммой, основываясь на наглядных представлениях. При этом выражение 4+3 они читают следующим образом: «к четырем прибавить три» или «4 увеличить на 3». Находя значения выражений, состоящих из трех чисел, которые соединены знаком сложения и вычитания, учащиеся фактически пользуются правилом порядка выполнения действий в неявном виде и выполняют первые тождественные преобразования выражений.

Познакомившись с выражениями вида а+в , первоклассники сначала употребляют термин «сумма» для обозначения числа, получающегося в результате сложения, т.е. сумма, трактуется как значение выражения. Затем с появлением более сложных выражений, например вида (а+в)-с , появляется необходимость иного понимания термина «сумма». Выражение а+в называется суммой, а его компоненты – слагаемыми. При введении выражений вида а-в, а·в, а:в поступают аналогично. Сначала разностью (произведением, частным) называют значение выражения, а затем само выражение. Одновременно учащимся сообщают названия его компонентов: уменьшаемое, вычитаемое, множители, делимое и делитель. Например, в равенстве 9-4=5 9-уменьшаемое, 4-вычитаемое, 5-разность. Запись 9-4 также называется разностью. Можно вводить эти термины в другой последовательности: предложить учащимся записать пример 9-4, пояснив, что записана разность, и вычислить, чему равна записанная разность. Учитель вводит название полученного числа: 5- тоже разность. Другие числа при вычитании называются: 9- уменьшаемое, 4- вычитаемое.

Запоминанию новых терминов способствуют плакаты вида

УМЕНЬШАЕМОЕ ВЫЧИТАЕМОЕ

РАЗНОСТЬ РАЗНОСТЬ

(значение разности)

Для закрепления этих терминов предлагаются упражнения вида: «Вычислите сумму чисел; запишите сумму чисел; сравните суммы чисел (вставьте знак >,< или = вместо · в запись 4 + 3 · 5 + 1 и прочтите полученную запись); замените число суммой одинаковых (разных) чисел; заполните таблицу; составьте по таблице примеры и решите их». Важно, чтобы дети поняли, что при вычислении суммы производится указанное действие (сложение), а при записи суммы получаем два числа, соединенных знаком плюс.

При изучении сложения и вычитания в пределах 10 включаются выражения, состоящие из трех и более чисел, соединенных одинаковыми или различными знаками действий вида: 3+1+1, 4-1-1, 2+2+2+2, 7-4+2, 6+3-7. раскрывая смысл таких выражений, учитель показывает, как их читают (например, к трем прибавить один и к полученному числу прибавить ещё один). Вычисляя значения этих выражений, дети практически овладевают правилом о порядке действий в выражениях без скобок, хотя и не формулируют его. Несколько позднее детей учат прообразовывать выражения в процессе вычислений, например: 10-7+5=3+5=8. такие записи являются первым шагом в выполнении тождественных преобразований. Знакомство первоклассников с выражениями вида 10- (6+2), (7-4)+5 и т.п. готовит их к изучению правил прибавления числа к сумме, вычитания числа из суммы и др., к записи решения составных задач, а также способствует более глубокому усвоению понятия выражения.

На следующем этапе усвоения понятия выражения учащиеся знакомятся с выражениями, в которых используются скобки: (10-3)+4, (6-2)+5. они могут быть введены посредством текстовых задач. Учитель предлагает составить на наборном полотне суммы и разности чисел 10 и 3, используя карточки, на которых записаны эти числа и знаки действий. Затем составленную учениками разность 10-3 учитель заменяет подготовленной заранее карточкой с этой разностью. Следующее задание: составить выражение (на этом этапе учащиеся говорят о нем как о примере), используя разность, число 4 и знак +. При чтении полученного выражения обращается внимание на то, что его компонентами являются разность и число. «Чтобы было заметно, - говорит учитель,- что разность является слагаемым, её заключают в скобки».

Самостоятельно конструируя выражения, дети осознают их структуру, овладевая умением читать, записывать, вычислять их значения.

Вводятся термины «математическое выражение» (или просто «выражение») и «значение выражения». Определения этих терминов не даются. Записав несколько простейших выражений: сумм, разностей, учитель называет их математическими выражениями. Предложив вычислить эти примеры, он объявляет, что числа, полученные в результате вычисления, называются значением выражения. Дальнейшая работа над числовыми выражениями состоит в том, что дети упражняются в чтении, записи под диктовку, составлении выражений, заполнении таблиц, широко используя при этом новые термины.

Правила порядка выполнения действий .

Особенности

числового выражения

выполнения

действий

Содержит только + и или только х и :

По порядку (слева направо)

65 - 20 + 5 - 8 = 42

24: 4 · 2: 3 = 4

Содержит не только + и - , но и х и :

Сначала выполняют по порядку (слева направо) х и : , а потом + и (слева направо)

120 – 20: 4 · 6 = 90

460 + 40 – 50 · 4 = 300

1 3 4 2

360: 4 + 10 – 8 · 5 = 60

180: 2 - 90: 3 = 60

Содержит одну или несколько пар скобок

Сначала находят значения выражений в скобках, а затем выполняют действия по правилам 1 и 2

1000- (100 · 9 + 10) =90

5· (76 – 6 + 10) = 400

80+ (360 - 300) ·5 = 380

3 1 4 2

99 · (24-23) –(12-4) =91

Для подсчета значения выражения часто приходится его преобразовывать, особенно, если выражение содержит большое количество действий и скобок.

Преобразование выражения – это замена данного выражения другим, значение которого равно значению заданного выражения. Преобразования выражений выполняются опираясь на свойства арифметических действий и следствия, вытекающие их них (правила: как прибавить сумму к числу, как вычесть число из суммы, как умножить число на произведение и т.д.). При изучении каждого правила, учащиеся убеждаются в том, что в выражениях определенного вида можно выполнять действия по-разному, но значение выражения при этом не изменяется.

    Использование условного обозначения чисел при обучении математике.

Пучки - десятки палочек и отдельные палочки используются для демонстрации образования и десятичного состава двузначных чисел. С этой же целью можно использовать полоски с кружками или треугольниками для иллюстрации десятков (10 полосок по 10 фигур) и единиц (полоски с 1, 2, ... , 9 фигурами). Иногда вместо полосок используют карточки-прямоугольники с изображением числовых фигур (точек) для иллюстрации единиц и карточки-треугольники, изображающие десятки.

Рассматриваются числа, полученные в результате счета десятков и единиц. Вначале можно обратиться к жизненной ситуации. Можно ввести модели десятков и единиц в виде треугольников и отдельных точек. Затем показывают треугольник, заполненный точками (кружками) по такому же «правилу», который будет обозначать десяток. На данном уроке это пособие можно использовать как демонстрационное: дети называют число, которое обозначено треугольниками и отдельными точками, или сами обозначают число с помощью этого пособия. В дальнейшем, когда работать практически с пучками палочек будет трудно, рисунки треугольников и отдельных точек помогут детям хорошо усвоить десятичный состав чисел, при этом треугольники уже не заполняют точками, договариваясь о том, что нарисованные в одну клетку треугольники обозначают десятки, а точки справа от них - единицы. При таком способе детям легко выполнять рисунки в тетрадях:

На каждом уроке, отведенном на изучение нумерации, идет работа над задачами. Вначале решаются простые задачи. Это задачи на нахождение суммы и остатка, на увеличение и уменьшение числа на несколько единиц, на разностное сравнение. К задачам дети рисуют «картинки с точками» или работают с фишками, поясняя: мальчиков на 2 больше, чем девочек, значит, берем столько кружков, сколько треугольников, и еще 2; девочек на карусели на 2 меньше, чем мальчиков, значит, их было столько же, сколько мальчиков, но без 2. Схемы к этим задачам выглядят так.

Важное место на уроках в 1-3 классах занимают наборные полотна различной конструкции, изготовляемые из картона, фанеры, ткани. На рисунке 4 изображено демонстрационное наборное полотно, а на рисунке 5 – индивидуальное.



Похожие статьи