Любая наземная экосистема включает компоненты. Экосистема

). Современный термин впервые был предложен английским экологом А. Тенсли (англ.) русск. в 1935 году. В. В. Докучаев также развивал представление о биоценозе как о целостной системе. Однако в русской науке общепринятым стало введённое В. Н. Сукачёвым понятие о биогеоценозе (1944). В смежных науках существуют также различные определения, в той или иной степени совпадающие с понятием «экосистема», например, «геосистема» в геоэкологии или введённые примерно в тот же период другими учёными «голоцен» (Ф. Клементс , 1930) и «биокосное тело» (В. И. Вернадский , 1944) .

Понятие экосистемы

Определения

Иногда особо подчёркивается, что экосистема - это исторически сложившаяся система (см. Биоценоз).

Концепция экосистемы

Юджин Одум (1913-2000). Отец экосистемной экологии

Экосистема - сложная (по определению сложных систем Л. Берталанфи) самоорганизующаяся, саморегулирующаяся и саморазвивающаяся система. Основной характеристикой экосистемы является наличие относительно замкнутых, стабильных в пространстве и времени потоков вещества и энергии между биотической и абиотической частями экосистемы . Из этого следует, что не всякая биологическая система может назваться экосистемой, например, Таковыми не являются аквариум или трухлявый пень . Данные биологические системы (естественные или искусственные) не являются в достаточной степени самодостаточными и саморегулируемыми (аквариум), если перестать регулировать условия и поддерживать характеристики на одном уровне, достаточно быстро она разрушится. Такие сообщества не формируют самостоятельных замкнутых циклов вещества и энергии (пень), а являются лишь частью большей системы . Такие системы следует называть сообществами более низкого ранга, или же микрокосмами . Иногда для них употребляют понятие - фация (например, в геоэкологии), но оно не способно в полной мере описать такие системы, особенно искусственного происхождения. В общем случае в разных науках понятию «фация» соответствуют различные определения: от систем субэкосистемного уровня (в ботанике, ландшафтоведении) до понятий, не связанных с экосистемой (в геологии), либо понятие, объединяющее однородные экосистемы (Сочава В. Б.), или почти тождественное (Берг Л. С. , Раменский Л. Г.) определению экосистемы.

Биогеоценоз и экосистема

В соответствии с определениями между понятиями «экосистема» и «биогеоценоз» нет никакой разницы, биогеоценоз можно считать полным синонимом термина экосистема . Однако существует распространённое мнение, согласно которому биогеоценоз может служить аналогом экосистемы на самом начальном уровне , так как термин «биогеоценоз» делает бо́льший акцент на связь биоценоза с конкретным участком суши или водной среды, в то время как экосистема предполагает любой абстрактный участок. Поэтому биогеоценозы обычно считаются частным случаем экосистемы . Разными авторами в определении термина биогеоценоз перечисляются конкретные биотические и абиотические компоненты биогеоценоза, в то время как определение экосистемы носит более общий характер .

Строение экосистемы

В экосистеме можно выделить два компонента - биотический и абиотический. Биотический делится на автотрофный (организмы, получающие первичную энергию для существования из фото- и хемосинтеза или продуценты) и гетеротрофный (организмы, получающие энергию из процессов окисления органического вещества - консументы и редуценты) компоненты , формирующие трофическую структуру экосистемы.

Единственным источником энергии для существования экосистемы и поддержания в ней различных процессов являются продуценты, усваивающие энергию солнца , (тепла , химических связей) с эффективностью 0,1 - 1 %, редко 3 - 4,5 % от первоначального количества. Автотрофы представляют первый трофический уровень экосистемы. Последующие трофические уровни экосистемы формируются за счёт консументов (2-ой, 3-й, 4-й и последующие уровни) и замыкаются редуцентами , которые переводят неживое органическое вещество в минеральную форму (абиотический компонент), которая может быть усвоена автотрофным элементом .

Основные компоненты экосистемы

С точки зрения структуры в экосистеме выделяют :

  1. климатический режим, определяющий температуру, влажность, режим освещения и прочие физические характеристики среды;
  2. неорганические вещества, включающиеся в круговорот;
  3. органические соединения, которые связывают биотическую и абиотическую части в круговороте вещества и энергии;
  4. продуценты - организмы, создающие первичную продукцию;
  5. макроконсументы, или фаготрофы, - гетеротрофы, поедающие другие организмы или крупные частицы органического вещества;
  6. микроконсументы (сапротрофы) - гетеротрофы, в основном грибы и бактерии , которые разрушают мёртвое органическое вещество, минерализуя его, тем самым возвращая в круговорот.

Последние три компонента формируют биомассу экосистемы.

С точки зрения функционирования экосистемы выделяют следующие функциональные блоки организмов (помимо автотрофов):

  1. биофаги - организмы, поедающие других живых организмов,
  2. сапрофаги - организмы, поедающие мёртвое органическое вещество.

Данное разделение показывает временно-функциональную связь в экосистеме, фокусируясь на разделении во времени образования органического вещества и перераспределении его внутри экосистемы (биофаги) и переработки сапрофагами . Между отмиранием органического вещества и повторным включением его составляющих в круговорот вещества в экосистеме может пройти существенный промежуток времени, например, в случае соснового бревна, 100 и более лет.

Все эти компоненты взаимосвязаны в пространстве и времени и образуют единую структурно-функциональную систему.

Экотоп

Обычно понятие экотоп определялось как местообитание организмов, характеризующееся определённым сочетанием экологических условий: почв, грунтов, микроклимата и др . Однако, в этом случае это понятие фактически почти идентично понятию климатоп .

На данный момент под экотопом в отличие от биотопа понимается определённая территория или акватория со всем набором и особенностями почв , грунтов , микроклимата и других факторов в неизменённом организмами виде . Примерами экотопа могут служить наносные грунты, новообразовавшиеся вулканические или коралловые острова , вырытые человеком карьеры и другие заново образовавшиеся территории. В этом случае климатоп является частью экотопа.

Климатоп

Изначально «климатоп» был определён В. Н. Сукачёвым (1964) как воздушная часть биогеоценоза, отличающаяся от окружающей атмосферы своим газовым составом, особенно концентарией углекислого газа в приземном биогоризонте, кислорода там же и в биогоризонтах фотосинтеза , воздушным режимом, насыщенностью биолинами, уменьшенной и изменённой солнечной радиацией и освещённостью, наличием люминесценции растений и некоторых животных, особым тепловым режимом и режимом влажности воздуха .

На данный момент это понятие трактуется чуть более широко: как характеристика биогеоценоза, сочетание физических и химических характеристик воздушной или водной среды, существенных для населяющих эту среду организмов . Климатоп задаёт в долговременном масштабе основные физические характеристики существования животных и растений, определяя круг организмов, которые могут существовать в данной экосистеме.

Эдафотоп

Под эдафотопом обычно понимается почва как составной элемент экотопа . Однако более точно это понятие следует определять как часть косной среды преобразованной организмами, то есть не всю почву , а лишь её часть . Почва (эдафотоп) является важнейшей составляющей экосистемы: в нём происходит замыкание циклов вещества и энергии, осуществляется перевод из мёртвого органического вещества в минеральные и их вовлечение в живую биомассу . Основными носителями энергии в эдафотопе выступают органические соединения углерода , их лабильные и стабильные формы, они в наибольшей степени определяют плодородие почв.

Биоценоз, представленный в схематичном виде как пищевая сеть и его биотоп

Биотоп

Биоценоз

Иногда выделяют третий аспект устойчивости - устойчивость экосистемы по отношению к изменениям характеристик среды и изменению своих внутренних характеристик . В случае, если экосистема устойчиво функционирует в широком диапазоне параметров окружающей среды и/или в экосистеме присутствует большое число взаимозаменяемых видов (то есть, когда различные виды, сходные по экологическим функциям в экосистеме, могут замещать друг друга), такое сообщество называют динамически прочным (устойчивым). В обратном случае, когда экосистема может существовать в весьма ограниченном наборе параметров окружающей среды, и/или большинство видов незаменимы в своих функциях, такое сообщество называется динамически хрупким (неустойчивым) . Необходимо отметить, что данная характеристика в общем случае не зависит от числа видов и сложности сообществ. Классическим примером может служить Большой Барьерный риф у берегов Австралии (северо-восточное побережье), являющийся одной из «горячих точек» биоразнообразия в мире - симбиотические водоросли кораллов, динофлагелляты , весьма чувствительны к температуре. Отклонение от оптимума буквально на пару градусов ведёт к гибели водорослей, а до 50-60 % (по некоторым источникам до 90 %) питательных веществ полипы получают от фотосинтеза своих мутуалистов .

У экосистем существует множество состояний, в которых она находится в динамическом равновесии; в случае выведения из него внешними силами, экосистема совершенно необязательно вернётся в изначальное состояние, зачастую её привлечёт ближайшее равновесное состояние (аттрактор), хотя оно может быть очень близким к первоначальному .

Биоразнообразие и устойчивость в экосистемах

Дождевые леса Амазонии, как и влажные экваториальные леса, являются местами наибольшего биоразнообразия

Обычно устойчивость связывали и связывают с биоразнообразием видов в экосистеме (альфаразнообразие), то есть, чем выше биоразнообразие, чем сложнее организация сообществ, чем сложнее пищевые сети, тем выше устойчивость экосистем. Но уже 40 и более лет назад на данный вопрос существовали различные точки зрения, и на данный момент наиболее распространено мнение, что как локальная, так и общая устойчивость экосистемы зависят от значительно большего набора факторов, чем просто сложность сообществ и биоразнообразие. Так, на данный момент с повышением биоразнообразия обычно связывают повышение сложности, силы связей между компонентами экосистемы, стабильность потоков вещества и энергии между компонентами .

Экваториальный дождевой лес может содержать более 5000 видов растений (для сравнения в лесах таёжной зоны - редко более 200 видов)

Важность биоразнообразия состоит в том, что оно позволяет формировать множество сообществ, различных по структуре, форме, функциям, и обеспечивает устойчивую возможность их формирования. Чем выше биоразнообразие, тем большее число сообществ может существовать, тем большее число разнообразных реакций (с точки зрения биогеохимии) может осуществляться, обеспечивая существование биосферы в целом .

Сложность и устойчивость экосистем

На данный момент не существует удовлетворительного определения и модели, описывающей сложность систем и экосистем в частности. Существует два широко распространённых определения сложности: колмогоровская сложность - слишком специализированное для применения к экосистемам. И более абстрактное, но тоже неудовлетворительное определение сложности, данное И. Пригожиным в работе «Время, хаос, квант» : Сложные системы - не допускающие грубого или операционального описания в терминах детерминистских причинностей . В других своих трудах И. Пригожин писал, что не готов дать строгого определения сложности , поскольку сложное - это нечто, что на данный момент не может быть корректно определено.

Параметры сложности и их влияние на устойчивость

В качестве параметров сложности экосистем традиционно подразумевались общее число видов (альфа-разнообразие), большое число взаимодействий между видами, сила взаимодействий между популяциями и различные сочетания этих характеристик. При дальнейшем развитии этих представлений появилось утверждение, что чем больше путей переноса и преобразования энергии в экосистеме, тем она устойчивей при различных видах нарушений .

Однако, позже было показано, что данные представления не могут охарактеризовать устойчивость экосистем . Существует множество примеров как весьма устойчивых монокультурных сообществ (фитоценозы орляка), так и слабоустойчивых сообществ с высоким биоразнообразием (коралловые рифы, тропические леса). В 70-80-х годах XX столетия усилился интерес к моделированию зависимости устойчивости от сложности экосистем . Разработанные в этот период модели показали, что в случайным образом генерируемой сети взаимодействия в сообществе при удалении бессмысленных цепей (типа А ест В, В ест С, С ест А и подобного типа) локальная устойчивость падает с увеличением сложности. Если продолжить усложнение модели и учесть, что консументы испытывают влияние пищевых ресурсов, а пищевые ресурсы от консументов не зависят, то можно прийти к выводу о том, что устойчивость не зависит от сложности, либо также падает с её увеличением. Разумеется, такие результаты справедливы главным образом для детритных цепей питания, в которых консументы не влияют на поток пищевых ресурсов , хотя и могут менять пищевую ценность последних.

При изучении общей устойчивости на модели из 6 видов (2 хищника-консумента второго порядка, 2 консумента первого порядка и 2 вида в основании пищевой цепи) исследовалось удаление одного из видов. В качестве параметра устойчивости была принята связность. Сообщество считалось устойчивым, если остальные виды оставались локально устойчивыми. Полученные результаты согласовывались с общепринятыми воззрениями о том, что с повышением сложности при выпадении хищников высшего порядка устойчивость сообщества падает, но при выпадении оснований пищевой цепи с повышением сложности устойчивость повышалась .

В случае упругой устойчивости , когда под сложностью также понимается связность, с повышением сложности упругая устойчивость также повышается. То есть, большее разнообразие видов и большая сила связи между ними позволяет сообществам быстрее восстанавливать свою структуру и функции. Данный факт подтверждает общепринятые взгляды на роль биоразнообразия как некоего пула (фонда) для восстановления полноценной структуры как экосистем, так и более высокоорганизованных структур биосферы, а также самой биосферы в целом. На данный момент общепринятым и фактически неоспариваемым является представление о том, что биосфера эволюционировала в сторону увеличения биоразнообразия (всех трёх его компонентов), ускорения обращения вещества между компонентами биосферы, и «убыстрения» времени жизни как видов, так и экосистем .

Потоки вещества и энергии в экосистемах

На данный момент научное понимание всех процессов внутри экосистемы далеко от совершенства, и в большей части исследований либо вся экосистема, либо некоторые её части выступают в качестве «чёрного ящика » . В то же время, как любая относительно замкнутая система, экосистема характеризуется входящим и выходящим потоком энергии и распределением этих потоков между компонентами экосистем.

Продуктивность экосистем

При анализе продуктивности и потоков вещества и энергии в экосистемах выделяют понятия биомасса и урожай на корню . Под урожаем на корню понимается масса тел всех организмов на единице площади суши или воды , а под биомассой - масса этих же организмов в пересчёте на энергию (например, в джоулях) или в пересчёте на сухое органическое вещество (например, в тоннах на гектар) . К биомассе относят тела организмов целиком, включая и витализированные омертвевшие части и не только у растений, к примеру, кора и ксилема , но и ногти и ороговевшие части у животных. Биомасса превращается в некромассу только тогда, когда отмирает часть организма (отделяется от него) или весь организм. Часто зафиксированные в биомассе вещества являются «мёртвым капиталом», особенно это выражено у растений: вещества ксилемы могут сотнями лет не поступать в круговорот, служа только опорой растения .

Под первичной продукцией сообщества (или первичной биологической продукцией) понимается образование биомассы (более точно - синтез пластических веществ) продуцентами без исключения энергии, затраченной на дыхание за единицу времени на единицу площади (например, в сутки на гектар).

Первичную продукцию сообщества разделяют на валовую первичную продукцию , то есть всю продукцию фотосинтеза без затрат на дыхание , и чистую первичную продукцию , являющуюся разницей между валовой первичной продукцией и затратами на дыхание. Иногда её ещё называют чистой ассимиляцией или наблюдаемым фотосинтезом ).

Чистая продуктивность сообщества - скорость накопления органического вещества, не потребляемого гетеротрофами (а затем и редуцентами). Обычно вычисляется за вегетационный период либо за год . Таким образом, это часть продукции, которая не может быть переработана самой экосистемой. В более зрелых экосистемах значение чистой продуктивости сообщества стремится к нулю (см. концепцию климаксных сообществ).

Вторичная продуктивность сообщества - скорость накопления энергии на уровне консументов. Вторичную продукцию не подразделяют на валовую и чистую, так как консументы только потребляют энергию, усвоенную продуцентами, часть её не ассимилируется, часть идёт на дыхание, а остаток идёт в биомассу, поэтому более корректно называть её вторичной ассимиляцией .

Распределение энергии и вещества в экосистеме может быть представлено в виде системы уравнений. Если продукцию продуцентов представить как P 1 , то продукция консументов первого порядка будет выглядеть следующим образом:

  • P 2 =P 1 -R 2 ,

где R 2 - затраты на дыхание, теплоотдача и неассимилированная энергия. Следующие консументы (второго порядка) переработают биомассу консументов первого порядка в соответствии с:

  • P 3 =P 2 -R 3

и так далее, до консументов самого высшего порядка и редуцентов. Таким образом, чем больше в экосистеме потребителей (консументов), тем более полно перерабатывается энергия, первоначально зафиксированная продуцентами в пластических веществах . В климаксных сообществах, где разнообразие для данного региона обычно максимально, такая схема переработки энергии позволяет сообществам устойчиво функционировать на протяжении длительного времени.

Энергетические соотношения в экосистемах (экологические эффективности)

График изменения соотношения P/B в экосистемах (по А. К. Бродскому, 2002)

Пространственные границы экосистемы (хорологический аспект)

В природе, как правило, не существует чётких границ между различными экосистемами . Всегда можно указать на ту или иную экосистему, но выделить дискретные границы, если они не представлены различными ландшафтными факторами (обрывы, реки, различные склоны холмов, выходы скальных пород и т. п.), не представляется возможным, ибо чаще всего существуют плавные переходы от одной экосистемы к другой . Это обусловлено относительно плавным изменением градиента факторов среды (влажность, температура, увлажнённость и прочее). Иногда переходы из одной экосистемы в другую могут фактически являться самостоятельной экосистемой. Обычно сообщества, образующиеся на стыке различных экосистем, называются экотонами . Термин «экотон» введён Ф. Клементсом в 1905 году.

Экотоны

Экотоны играют существенную роль в поддержании биологического разнообразия экосистем за счёт так называемого краевого эффекта - сочетания комплекса факторов среды различных экосистем, обуславливающее большее разнообразие условий среды, следовательно, лицензий и экологических ниш . Тем самым возможно существование видов как из одной, так и из другой экосистемы, а также специфичных для экотона видов (например растительность прибрежно-водных местообитаний).

Некоторые возможные варианты границ (экотоны) между экосистемами

В российской литературе краевой эффект иногда называют эффектом опушки .

Примерами экотонов могут служить прибрежные участки суши и водоемов (например, литораль), опушки, переходы из лесных экосистем в полевые, эстуарии . Однако не всегда экотон является местом повышенного биоразнообразия видов. К примеру, эстуарии рек, впадающих в моря и океаны , наоборот, характеризуются пониженным биоразнообразием видов, так как средняя солёность дельт не позволяет существовать многим пресноводным и солоноводным (морским) видам.

Альтернативным представлением о континуальных переходах между экосистемами является представление о экоклинах (экологических рядах). Экоклин - постепенная смена биотопов, генетически и фенотипически приспособленных к конкретной среде обитания, при пространственном изменении какого-либо фактора среды (обычно климатического), а потому составляющих непрерывный ряд форм без заметных перерывов постепенности. Экоклин невозможно разделить на экотипы. Например, длина ушей лисиц и мн. др., их признаки изменяются с севера на юг настолько постепенно, что очень затруднительно выделить четкие морфологические группы, которые бы естественно объединялись в подвиды.

Временные границы экосистемы (хронологический аспект)

Смена сообщества в сосновом лесу после низового пожара (слева) и через два года после пожара (справа)

На одном и том же биотопе с течением времени существуют различные экосистемы. Смена одной экосистемы на другую может занимать как довольно длительные, так относительно короткие (несколько лет) промежутки времени. Длительность существования экосистем в таком случае определяется этапом сукцессии . Смена экосистем в биотопе может быть обусловлена и катастрофическими процессами, но в таком случае, существенно изменяется и сам биотоп, и такую смену не принято называть сукцессией (за некоторыми исключениями, когда катастрофа, например, пожар - естественный этап циклической сукцессии) .

Сукцессия

Сукцессия - это последовательная, закономерная смена одних сообществ другими на определённом участке территории, обусловленная внутренними факторами развития экосистем . Каждое предыдущее сообщество предопределяет условия существования следующего и собственного исчезновения . Это связано с тем, что в экосистемах, которые являются переходными в сукцессионом ряду, происходит накопление вещества и энергии, которые они уже не в состоянии включить в круговорот, преобразование биотопа, изменение микроклимата и других факторов, и тем самым создаётся вещественно-энергетическая база, а также и условия среды, необходимые для формирования последующих сообществ. Однако, есть и другая модель, которая объясняет механизм сукцессии следующим образом : виды каждого предыдущего сообщества вытесняются лишь последовательной конкуренцией, ингибируя и «сопротивляясь» внедрению последующих видов. Тем не менее, эта теория рассматривает лишь конкурентные отношения между видами, не описывая всю картину экосистемы в целом. Безусловно, такие процессы идут, но конкурентное вытеснение предыдущих видов возможно именно из-за преобразования ими биотопа. Таким образом, обе модели описывают разные аспекты процесса и верны одновременно.

Сукцессия бывает автотрофной (например, сукцессия после лесного пожара) и гетеротрофной (например, осушенное болото) . На ранних стадиях автотрофной сукцессионной последовательности соотношение P/R много больше единицы, так как обычно первичные сообщества обладают высокой продуктивностью, но структура экосистемы ещё не сформировалась полностью, и нет возможности утилизировать эту биомассу . Последовательно, с усложнением сообществ, с усложнением структуры экосистемы, расходы на дыхание (R) растут, так как появляется всё больше гетеротрофов, ответственных за перераспределение вещественно-энергетических потоков, соотношение P/R стремится к единице и фактически является таковым у терминального сообщества (экосистемы) . Гетеротрофная сукцессия обладает обратными характеристиками: в ней соотношение P/R на ранних этапах много меньше единицы (так как существует много органического вещества и нет необходимости в его синтезе, его можно сразу использовать на построение сообщества) и постепенно увеличивается по мере продвижения по сукцессионным стадиям.

Пример стадии гетеротрофной сукцессии - заболоченный луг

На ранних этапах сукцессии видовое разнообразие мало, но по мере развития разнообразие нарастает, изменяется видовой состав сообщества, начинают преобладать виды со сложными и продолжительными жизненными циклами, обычно появляются всё более крупные организмы, происходит развитие взаимовыгодных коопераций и симбиозов , усложняется трофическая структура экосистемы. Обычно предполагается, что терминальная стадия сукцессии обладает наибольшим видовым биоразнообразием. Это справедливо не всегда, но для климаксных сообществ тропических лесов это утверждение справедливо , а для сообществ умеренных широт пик разнообразия приходится на середину сукцессинного ряда или ближе к терминальной стадии . На ранних стадиях сообщества состоят из видов с относительно высокой скоростью размножения и роста, но низкой способностью к индивидуальному выживанию (r-стратеги). В терминальной стадии воздействие естественного отбора благоприятствует видам с низкой скоростью роста, но большей способностью к выживанию (k-стратеги).

По мере продвижения по сукцессионному ряду происходит всё большее вовлечение биогенных элементов в круговорот в экосистемах, возможно относительное замыкание внутри экосистемы потоков таких биогенных элементов, как азот и кальций (одни из наиболее подвижных биогенов) . Поэтому в терминальной стадии, когда большая часть биогенов вовлечена в круговорот, экосистемы более независимы от внешнего поступления данных элементов .

Для исследования процесса сукцессии применяют различные математические модели, в том числе стохастического характера

Климаксное сообщество

Понятие сукцессии тесно тесно связано с понятием климаксного сообщества . Климаксное сообщество формируется в результате последовательной смены экосистем и представляет собой наиболее сбалансированное сообщество , максимально эффективно использующее вещественно-энергетические потоки, то есть поддерживающее максимально возможную биомассу на единицу поступающей в экосистему энергии.

Теоретически у каждого сукцессионного ряда существует климаксное сообщество (экосистема), которое является терминальной стадией развития (или несколько, так называемая концепция поликлимакса). Однако, в реальности сукцессинный ряд замыкается климаксом не всегда, может реализоваться субклимаксное сообщество (или названное Ф. Клементсом - плагиклимакс), которое представляет собой сообщество, предшествующее климаксному, достаточно развитое структурно и функционально . Такая ситуация может возникать в силу естественных причин - условий среды или вследствие деятельности человека (в таком случае его называют дисклимакс ).

Ранги экосистем

Вопрос ранжирования экосистем достаточно сложен. Выделение минимальных экосистем (биогеоценозов) и экосистемы наивысшего ранга - биосферы не вызывает сомнений . Промежуточные же выделения довольно сложны, так как сложности хорологического аспекта не всегда однозначно позволяют определить границы экосистем. В геоэкологии (и ландшафтоведении) существует следующее ранжирование: фация - урочище (экосистема) - ландшафт - географический район - географическая область - биом - биосфера . В экологии существует сходное ранжирование , однако, обычно считается, что корректно выделение лишь одной промежуточной экосистемы - биома.

Биомы

Биом - крупное системно-географическое (экосистемное) подразделение в пределах природно-климатической зоны (Реймерс Н. Ф.). Согласно Р. Х. Уиттекеру - группа экосистем данного континента, которые имеют сходную структуру или физиономию растительности и общий характер условий среды. Это определение несколько некорректно, так как существует привязка к конкретному континенту, а некоторые биомы присутствуют на разных континентах, например, тундровый биом или степной .

На данный момент наиболее общепринятое определение звучит так: «Биом - совокупность экосистем со сходным типом растительности, расположенных в одной природно-климатической зоне» (Акимова Т. А., Хаскин В. В. ).

Общим в этих определениях является то, что в любом случае биомом называется совокупность экосистем одной природно-климатической зоны.

Выделяют от 8 до 30 биомов. Географическое распределение биомов определяют :

  1. Закон географической зональности (сформулированный В. В. Докучаевым)

Наземные биомы, классифицированные по типу растительности
Полярные пустыни Тундра Тайга Широколиственные леса Степи Субтропические дождевые леса Средиземноморские биомы Муссонные леса Аридные пустыни Ксерофитных кустарников Южные степи Семиаридные пустыни Саванны Саванны с древесной растительностью (лесостепи) Субтропический лес Тропический дождевой лес Альпийская тундра Горные леса

Биосфера

Термин биосфера был введён Жаном-Батистом Ламарком в начале XIX века, а в геологии предложен австрийским геологом Эдуардом Зюссом в 1875 году . Однако создание целостного учения о биосфере принадлежит русскому учёному Владимиру Ивановичу Вернадскому .

Биосфера - экосистема высшего порядка, объединяющая все остальные экосистемы и обеспечивающая существование жизни на Земле. В состав биосферы входят следующие «сферы» :

Биосфера тоже не замкнутая система, она фактически полностью обеспечивается энергией Солнца , небольшую часть составляет тепло самой Земли. Ежегодно Земля получает от Солнца около 1,3*10 24 калорий . 40 % от этой энергии излучается обратно в космос, около 15 % идёт на нагрев атмосферы, почвы и воды, вся остальная энергия является видимым светом, который и является источником фотосинтеза.

В. И. Вернадский впервые чётко сформулировал понимание того, что всё живое на планете неразрывно связанно с биосферой и обязано ей своим существованием:

В действительности, ни один живой организм в свободном состоянии на Земле не находится. Все эти организмы неразрывно и непрерывно связаны - прежде всего питанием и дыханием - с окружающей их материально-энергетической средой. Вне ее в природных условиях они существовать не могут.

Искусственные экосистемы

Искусственные экосистемы - это экосистемы, созданные человеком, например, агроценозы , природно-хозяйственные системы или Биосфера 2 .

Искусственные экосистемы имеют тот же набор компонентов, что и естественные: продуценты , консументы и редуценты , но есть существенные отличия в перераспределении потоков вещества и энергии. В частности, созданные человеком экосистемы отличаются от естественных следующим :

Без поддержания энергетических потоков со стороны человека в искусственных системах с той или иной скоростью восстанавливаются естественные процессы и формируется естественная структура компонентов экосистемы и вещественно-энергетических потоков между ними.

Понятия, сходные с понятием экосистемы, в смежных науках

В экогеологии, ландшафтоведении и геоэкологии

В данных науках существуют понятия, схожие с понятием экосистема. Различие состоит в том, что в данных науках происходит смещение аспекта рассмотрения структуры и функций экосистем.

В целом, в географических науках принято рассматривать природный территориальный комплекс , как эквивалент экосистемы.

См. также

Примечания

  1. Forbes, S. A. The lake as a microcosm (англ.) // Bull. Sci. Assoc . - Peoria, Illinois, 1887. - P. 77–87. Reprinted in Illinois Nat. Hist. Survey Bulletin 15(9):537-550.
  2. Ю. Одум. Основы экологии. - М .: Мир, 1975. - 741 с.
  3. . Словари на Академке. Архивировано
  4. Ю. Одум. Экология. - М .: Мир, 1986.
  5. Раздел «Экосистемы» . The ECOLOGY site. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  6. Биогеоценоз Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  7. Николайкин, Н. И. , Николайкина, Н. Е., Мелехова, О. П. Экология. - 5-е. - М.: Дрофа, 2006. - 640 с.
  8. Бродский А. К. Краткий курс общей экологии, Учебное пособие для ВУЗов. - СПб: «Деан», 2000. - 224 с.
  9. Н. В. Короновский , Гидротермальные образования в океанах . Соросовский Образовательный Журнал, - №10, 1999, - cтр.55-62. Проверено 14 августа 2010.
  10. Д. В. Гричук. Теродинамические модели субмаринных гидротермальных систем . - М .: Научный мир, 2000. - ISBN УДК 550.40
  11. В. Ф. Левченко. Глава 3 // Эволюция Биосферы до и после появления человека. - СПб: Наука, 2004. - 166 с. - ISBN 5-02-026214-5
  12. Раутиан А. С. Палеонтология как источник сведений о закономерностях и факторах эволюции // Современная палеонтология . - М ., 1988. - Т. 2. - С. 76-118.
  13. Раутиан А. С., Жерихин В. В. Модели филоценогенеза и уроки экологических кризисов геологического прошлого // Журн. общ. биологии . - 1997. - Т. 58 № 4. - С. 20-47.
  14. Остроумов С. А. Новые варианты определений понятий и терминов «экосистема» и «биогеоценоз» // ДАН . - 2002. - Т. 383 № 4. - С. 571-573.
  15. М. Бигон, Дж. Харпер, К. Таунсенд. Экология. Особи, популяции и сообщества. - М .: Мир, 1989.
  16. Экотоп Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  17. Т. А. Работнов «О Биогеоценозах» . // Бюллетень МОИП, отдел биологический, - т. 81, - вып. 2. - 1976. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  18. Климатоп . Быков Б. А. "Экологический словарь" - Алма-Ата: "Наука", 1983 - с.216. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  19. Основные термины экологии . Буренина Е.М., Буренин Е.П. Электронный учебник по экологии.. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  20. Климатоп . Словарь по естественным наукам (Яндекс словари). Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  21. Эдафотоп Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  22. . Экологический словарь(Словари на Академике). Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  23. Биоценоз . Большая Советская Энциклопедия. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  24. Зооценоз . Большая Советская Энциклопедия. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  25. Гомеостаз экосистемы . Научно-Информационный портал ВИНИТИ. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  26. Хатчинсон С., Хоукинс Л. Е. Океаны. Энциклопедический путеводитель. - М .: Махаон, 2007. - 304 с. - ISBN 5-18-001089-6
  27. А. Гиляров. «Кораллы обесцвечиваются из-за утраты взаимопонимания» . Элементы большой науки. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  28. А. Д. Арманд , Эксперимент «Гея», проблема живой земли . Российская Академия Наук. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  29. А. В. Галанин. Лекции по экологии. . Сайт Ботанического сада ДВО РАН. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  30. Пригожин И., Стенгерс И. Время, хаос, квант . - Москва, 1994. - С. 81. - 263 с.
  31. Николис Г., Пригожин И. Познание сложного. - М.: Мир, 1990. - с. 352. Страница 47
  32. MacArthur R.H. Fluctuations of animal populations and a measure of community stability // Ecology, 36, 1955, - pp. 533-536
  33. May R.M. Will a large complex system be stable? // Nature (London), 1972, 238, - pp. 413-414
  34. May R.M Models for single populations. // Theoretical Ecology: Principles and Applications, 2nd edn., R.M. May ed. - pp. 5-29, - Blackwell Scientific Publications, Oxford 1981
  35. May R.M Models for two interacting populations. // Theoretical Ecology: Principles and Applications, 2nd edn., R.M. May ed. - pp.78-104, - Blackwell Scientific Publications, Oxford 1981
  36. May R.M Patterns in multi-species communities. // Theoretical Ecology: Principles and Applications, 2nd edn., R.M. May ed., - Blackwell Scientific Publications, Oxford 1981
  37. DeAngelis D.L. Stability and connectance in food web models // Ecology 56, 1975, - pp. 238-243
  38. Pimm S.L. The structure of food webs // Theoretical Population Biology, 16, 1979, - pp. 144-158
  39. Pimm S.L. Complexity and stability: another look at MacArthu’s original hypothesis // Oikos , 33, 1979, - pp. 351-357
  40. В. Ф. Левченко, Я. И. Старобогатов Физико-экологический подход к эволюции биосферы . // «Эволюционная биология: история и теория». Санкт-Петербург, 1999, - с. 37-46. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  41. Левченко В. Ф. Эволюция биосферы до и после появления человека. . Санкт-Петербург, Институт эволюционной физиологии и биохимии Российской Академии наук, - Издательство «НАУКА», 2004. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  42. Первичная продукция . Научно-информационный портал ВИНИТИ. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  43. Первичная продуктивность . Глоссарий.ру. Проверено 14 августа 2010.
  44. Маврищев В.В. Континуум, экотоны, краевой эффект // Основы экологии: учебник . - 3-е изд. испр. и доп. - Минск: Высшая школа, 2007. - 447 с. - ISBN 978-985-06-1413-1
  45. Экотон. . Словарь по естественным наукам (Яндекс словари). Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  46. Экотон и концепция краевого (пограничного) эффекта . сайт Биоэкология. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  47. Кревой эффект . Экологический энциклопедический словарь. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  48. Эстуарий. . Словарь терминов по физической географии Института географии РАН. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  49. Сукцессия . Большая Советская Энциклопедия. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  50. Развитие и эволюция экосистемы . портал Инженерная экология. Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  51. В, Грант. Эволюционный процесс . Архивировано из первоисточника 22 августа 2011. Проверено 14 августа 2010.
  52. В. И. Грабовский Самоорганизация и структура сообществ, или как в искусственном однородном мире возникают структуры, имитирующие растительную сукцессиию . Модели жизни в биологии развития, экологии, экономике.(недоступная ссылка - история ) Проверено 14 августа 2010.

Экосистема и ее свойства

Введение

Слово "экология" образовано из двух греческих слов: "oicos", что означает дом, жилище, и "logos" - наука и дословно переводится как наука о доме, местообитании. Впервые этот термин использовал немецкий зоолог Эрнст Геккель в 1886 году, определив экологию как область знаний, изучающую экономику природы, - исследование общих взаимоотношений животных как с живой, так и с неживой природой, включающей все как дружественные, так и недружественные отношения, с которыми животные и растения прямо или косвенно входят в контакт. Такое понимание экологии стало общепризнанным и сегодня классическая экология - это наука об изучении взаимоотношений живых организмов с окружающей их средой. Живое вещество настолько многообразно , что его изучают на разных уровнях организации и под разным углом зрения. Уровни организмов, популяций и экосистем являются областью интересов классической экологии. В зависимости от объекта исследования и угла зрения, под которым он изучается, в экологии сформировались самостоятельные научные направления. По размерности объектов изучения экологию делят на аутэкологию (организм и его среда), популяционную экологию (популяция и ее среда), синэкологию (сообщества и их среда), биогеоцитологию (учение об экосистемах) и глобальную экологию (учение о биосфере Земли). В зависимости от объекта изучения экологию подразделяют на экологию микроорганизмов, грибов, растений, животных, человека, агроэкологию, промышленную (инженерную), экологию человека и т.п. По средам и компонентам различают экологию суши, пресных водоемов, моря, пустынь, высокогорий и других средовых и географических пространств. К экологии часто относят большое количество смежных отраслей знаний, главным образом из области охраны окружающей среды. В данной работе рассмотрены прежде всего основы общей экологии, то есть классические законы взаимодействия живых организмов с окружающей средой.

Экосистема - основное понятие экологии

Экология рассматривает взаимодействие живых организмов и неживой природы. Это взаимодействие, во-первых, происходит в рамках определенной системы (экологической системы, экосистемы) и, во-вторых, оно не хаотично, а определенным образом организовано, подчинено законам. Экосистемой называют совокупность продуцентов, консументов и детритофагов, взаимодействующих друг с другом и с окружающей их средой посредством обмена веществом, энергией и информацией таким образом, что эта единая система сохраняет устойчивость в течение продолжительного времени. Таким образом, для естественной экосистемы характерны три признака:

1) экосистема обязательно представляет собой совокупность живых и неживых компонентов
2) в рамках экосистемы осуществляется полный цикл, начиная с создания органического вещества и заканчивая его разложением на неорганические составляющие;
3) экосистема сохраняет устойчивость в течение некоторого времени, что обеспечивается определенной структурой биотических и абиотических компонентов.

Примерами природных экосистем являются озеро, лес, пустыня, тундра, суша, океан, биосфера. Как видно из примеров, более простые экосистемы входят в более сложно организованные. При этом реализуется иерархия организации систем, в данном случае экологических. Таким образом, устройство природы следует рассматривать как системное целое , состоящее из вложенных одна в другую экосистем, высшей из которых является уникальная глобальная экосистема - биосфера. В ее рамках происходит обмен энергией и веществом между всеми живыми и неживыми составляющими в масштабах планеты. Грозящая всему человечеству катастрофа состоит в том, что нарушен один из признаков, которым должна обладать экосистема: биосфера как экосистема деятельностью человека выведена из состояния устойчивости. В силу своих масштабов и многообразия взаимосвязей она не должна от этого погибнуть, она перейдет в новое устойчивое состояние, изменив при этом свою структуру, прежде всего неживую, а вслед за ней неизбежно и живую. Человек как биологический вид меньше других имеет шанс приспособиться к новым быстро изменяющимся внешним условиям и скорее всего исчезнет первым. Поучительным и наглядным тому примером является история острова Пасхи. На одном из полинезийских островов, носящем название острова Пасхи, в результате сложных миграционных процессов в VII веке возникла замкнутая изолированная от всего мира цивилизация. В благоприятном субтропическом климате она за сотни лет существования достигла известных высот развития, создав само-бытную культуру и письменность, до наших дней не поддающуюся расшифровке. А в XVII веке она без остатка погибла, уничтожив вначале растительный и животный мир острова, а затем погубив себя в прогрессирующей дикости и каннибализме. У последних островитян не осталось уже воли и материала, чтобы построить спасительные "ноевы ковчеги" - лодки или плоты. В память о себе исчезнувшее сообщество оставило полупустынный остров с гигантскими каменными фигурами - свидетелями былого могущества. Итак, экосистема является важнейшей структурной единицей устройства окружающего мира. Как видно из рис. 1 (см. приложение), основу экосистем составляют живое вещество, характеризующееся биотической структурой, и среда обитания, обусловленная совокупностью экологических факторов. Рассмотрим их более подробно.

Биотическая структура экосистем

Экосистема основана на единстве живого и неживого вещества. Суть этого единства проявляется в следующем. Из элементов неживой природы, главным образом молекул CO2 и H2O, под воздействием энергии солнца синтезируются органические вещества, составляющие все живое на планете. Процесс создания органического вещества в природе происходит одновременно с противоположным процессом - потреблением и разложением этого вещества вновь на исходные неорганические соединения. Совокупность этих процессов протекает в рамках экосистем различных уровней иерархии. Чтобы эти процессы были уравновешены, природа за миллиарды лет отработала определенную структуру живого вещества системы. Движущей силой в любой материальной системе служит энергия. В экосистемы она поступает главным образом от Солнца . Растения за счет содержащегося в них пигмента хлорофилла улавливают энергию излучения Солнца и используют ее для синтеза основы любого органического вещества - глюкозы C6H12O6.
Кинетическая энергия солнечного излучения преобразуется таким образом в потенциальную энергию, запасенную глюкозой. Из глюкозы вместе с получаемыми из почвы минеральными элементами питания - биогенами - образуются все ткани растительного мира - белки, углеводы, жиры, липиды, ДНК, РНК, то есть органическое вещество планеты.
Кроме растений продуцировать органическое вещество могут некоторые бактерии . Они создают свои ткани, запасая в них, как и растения, потенциальную энергию из углекислого газа без участия солнечной энергии. Вместо нее они используют энергию, которая образуется при окислении неорганических соединений, например, аммиака, железа и особенно серы (в глубоких океанических впадинах, куда не проникает солнечный свет, но где в изобилии скапливается сероводород, обнаружены уникальные экосистемы). Это так называемая энергия химического синтеза, поэтому организмы называются хемосинтетиками. Таким образом, растения и хемосинтетики создают органическое вещество из неорганических составляющих с помощью энергии окружающей среды. Их называют продуцентами или автотрофами. Высвобождение запасенной продуцентами потенциальной энергии обеспечивает существование всех остальных видов живого на планете. Виды, потребляющие созданную продуцентами органику как источ-ник вещества и энергии для своей жизнедеятельности, называются консументами или гетеротрофами. Консументы - это самые разнообразные организмы (от микроорганизмов до синих китов): простейшие, насекомые, пресмыкающиеся, рыбы, птицы и, наконец, млекопитающие, включая человека. Консументы, в свою очередь, подразделяются на ряд подгрупп в соответствии с различиями в источниках их питания. Животные, питающиеся непосредственно продуцентами, называются первичными консументами или консументами первого порядка. Их самих употребляют в пищу вторичные консументы. Например, кролик, питающийся морковкой, - это консумент первого порядка, а лиса, охотящаяся за кроликом, - консумент второго порядка. Некоторые виды живых организмов соответствуют нескольким таким уровням. Например, когда человек ест овощи - он консумент первого порядка, говядину - консумент второго порядка, а употребляя в пищу хищную рыбу, выступает в роли консумента третьего порядка.

Первичные консументы, питающиеся только растениями, называются растительноядными или фитофагами. Консументы второго и более высоких порядков - плотоядные. Виды, употребляющие в пищу как растения, так и животных, относятся к всеядным, например, человек. Мертвые растительные и животные остатки, например опавшие листья, трупы животных, продукты систем выделения, называются детритом. Это органика! Существует множество организмов, спе-циализирующихся на питании детритом. Они называются детритофагами. Примером могут служить грифы, шакалы, черви, раки, термиты, муравьи и т.п. Как и в случае обычных консументов, различают первичных детритофагов, питающихся непосредственно детритом, вторичных и т. п. Наконец, значительная часть детрита в экосистеме, в частности опавшие листья, валежная древесина, в своем исходном виде не поедается животными, а гниет и разлагается в процессе питания ими грибов и бактерий. Поскольку роль грибов и бактерий столь специфична, их обычно выделяют в особую группу детритофагов и называют редуцентами. Редуценты служат на Земле санитарами и замыкают биогеохимический круговорот веществ, разлагая органику на исходные неорганические составляющие - углекислый газ и воду. Таким образом, несмотря на многообразие экосистем, все они обладают структурным сходством. В каждой из них можно выделить фотосинтезирующие растения - продуценты, различные уровни консументов, детритофагов и редуцентов. Они и составляют биотическую структуру экосистем.

Экологические факторы

Неживая и живая природа, окружающая растения, животных и человека, носит название среды обитания. Множество отдельных компонентов среды, влияющих на организмы, называются экологическими факторами. По природе происхождения выделяют абиотические, биотические и антропогенные факторы. Абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. Биотические факторы - это все формы воздействия живых организмов друг на друга. Раньше к биотическим факторам относили и воздействие человека на живые организмы, однако в настоящее время выделяют особую категорию факторов, порождаемых человеком. Антропогенные факторы - это все формы деятельности человеческого общества, которые приводят к изменению природы как среды обитания и других видов и непосредственно сказываются на их жизни. Таким образом, каждый живой организм испытывает влияние неживой природы, организмов других видов, в том числе и человека, и, в свою очередь, оказывает воздействие на каждую из этих составляющих.

Законы воздействия экологических факторов на живые организмы

Несмотря на многообразие экологических факторов и различную природу их происхождения, существуют некоторые общие правила и закономерности их воздействия на живые организмы. Для жизни организмов необходимо определенное сочетание условий. Если все условия среды обитания благоприятны, за исключением одного, то именно это условие становится решающим для жизни рассматриваемого организма. Оно ограничивает (лимитирует) развитие организма, поэтому называется лимитирующим фактором. Первоначально было установлено, что развитие живых организмов ограничивает недостаток какого-либо компонента, например, минеральных солей, влаги, света и т.п. В середине XIX века немецкий химикорганик Юстас Либих первым экспериментально доказал, что рост растения зависит от того элемента питания, который присутствует в относительно минимальном количестве. Он назвал это явление законом минимума; в честь автора его еще называют законом Либиха. В современной формулировке закон минимума звучит так: выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Однако, как выяснилось позже, лимитирующим может быть не только недостаток, но и избыток фактора, например, гибель урожая из-за дождей, перенасыщение почвы удобрениями и т.п. Понятие о том, что наравне с минимумом лимитирующим фактором может быть и максимум, ввел спустя 70 лет после Либиха американский зоолог В.Шелфорд, сформулировавший закон толерантности. Согласно закону толерантности лимитирующим фактором процветания популяции (организма) может быть как минимум, так и максимум экологического воздействия, а диапазон между ними определяет величину выносливости (предел толерантности) или экологическую валентность организма к данному фактору. Благоприятный диапазон действия экологического фактора называется зоной оптимума (нормальной жизнедеятельности). Чем значительнее отклонение действия фактора от оптимума, тем больше данный фактор угнетает жизнедеятельность популяции. Этот диапазон называется зоной угнетения. Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых существование организма или популяции уже невозможно. В соответствии с законом толерантности любой избыток вещества или энергии оказывается загрязняющим среду началом. Так, избыток воды даже в засушливых районах вреден и вода может рассматриваться как обычный загрязнитель, хотя в оптимальных количествах она просто необходима. В частности, избыток воды препятствует нормальному почвообразованию в черноземной зоне. Виды, для существования которых необходимы строго определенные экологические условия, называют стенобиотными, а виды, приспосабливающиеся к экологической обстановке с широким диапазоном изменения параметров, - эврибиотными. Среди законов, определяющих взаимодействие индивида или особи с окружающей его средой, выделим правило соответствия условий среды генетической предопределенности организма. Оно утверждает, что вид организмов может существовать до тех пор и постольку, поскольку окружающая его природная среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям.

Абиотические факторы среды обитания

Абиотические факторы - это свойства неживой природы, которые прямо или косвенно влияют на живые организмы. На рис. 5 (см. приложение) приведена классификация абиотических факторов. Начнем рассмотрение с климатических факторов внешней среды. Температура является наиболее важным климатическим фактором. От нее зависит интенсивность обмена веществ организмов и их географическое распространение. Любой организм способен жить в пределах определенного диапазона температур. И хотя для разных видов организмов (эвритермных и стенотермных) эти интервалы различны, для большинства из них зона оптимальных температур, при кото-рых жизненные функции осуществляются наиболее активно и эффективно, сравнительно невелика. Диапазон температур, в которых может существовать жизнь, составляет примерно 300 С: от -200 до +100 ЬС. Но большинство видов и большая часть активности приурочены к еще более узкому диапазону температур. Определенные организмы, особенно в стадии покоя, могут существовать по крайней мере некоторое время, при очень низких температурах. Отдельные виды микроорганизмов, главным образом бактерии и водоросли, способны жить и размножаться при температурах, близких к точке кипения. Верхний предел для бактерий горячих источников составляет 88 С, для сине-зеленых водорослей - 80 С, а для самых устойчивых рыб и насекомых - около 50 С. Как правило, верхние предельные значения фактора оказываются более критическими, чем нижние, хотя многие организмы вблизи верхних пределов диапазона толерантности функционируют более эффективно. У водных животных диапазон толерантности к температуре обычно более узок по сравнению с наземными животными, так как диапазон колебаний температуры в воде меньше, чем на суше. Таким образом, температура является важным и очень часто лимитирующим фактором. Температурные ритмы в значительной степени контролируют сезонную и суточную активность растений и животных.

Количество осадков и влажность - основные величины, измеряемые при изучении этого фактора. Количество осадков зависит в основном от путей и характера больших перемещений воздушных масс. Например, ветры, дующие с океана, оставляют большую часть влаги на обращенных к океану склонах, в результате чего за горами остается "дождевая тень", способствующая формированию пустыни. Двигаясь в глубь суши, воздух аккумулирует некоторое количество влаги, и количество осадков опять увеличивается. Пустыни, как правило, расположены за высокими горными хребтами или вдоль тех берегов, где ветры дуют из обширных внутренних сухих районов, а не с океана, например, пустыня Нами в Юго-Западной Африке. Распределение осадков по временам года - крайне важный лимитирующий фактор для организмов. Влажность - параметр, характеризующий содержание водяного пара в воздухе. Абсолютной влажностью называют количество водяного пара в единице объема воздуха. В связи с зависимостью количества пара, удерживаемого воздухом, от температуры и давления, введено понятие относительной влажности - это отношение пара, содержащегося в воздухе, к насыщающему пару при данных температуре и давлении. Так как в природе существуют суточный ритм влажности - повышение ночью и снижение днем, и колебание ее по вертикали и горизонтали, этот фактор наряду со светом и температурой играет важную роль в регулировании активности организмов. Доступный живым организмам запас поверхностной воды зависит от количества осадков в данном районе, но эти величины не всегда совпадают. Так, пользуясь подземными источниками, куда вода поступает из других районов, животные и растения могут получать больше воды, чем от поступления ее с осадками. И наоборот, дождевая вода иногда сразу же становится недоступной для организмов. Излучение Солнца представляет собой электромагнитные волны различной длины. Оно совершенно необходимо живой природе, так как является основным внешним источником энергии. Надо иметь в виду то, что спектр электромагнитного излучения Солнца весьма широк и его частотные диапазоны различным образом воздействуют на живое вещество.

Для живого вещества важны качественные признаки света - длина волны, интенсивность и продолжительность воздействия. Ионизирующее излучение выбивает электроны из атомов и присоединяет их к другим атомам с образованием пар положительных и отрицательных ионов. Его источником служат радиоактивные вещества, содержащиеся в горных породах, кроме того, оно поступает из космоса. Разные виды живых организмов сильно отличаются по своим способностям выдерживать большие дозы радиационного облучения. Как показывают данные большей части исследований, наиболее чувствительны к облучению быстро делящиеся клетки. У высших растений чувствительность к ионизирующему излучению прямо пропорциональна размеру клеточного ядра, а точнее объему хромосом или содержанию ДНК. Газовый состав атмосферы также является важным климатическим фактором. Примерно 3-3,5 млрд лет назад атмосфера содержала азот, аммиак, водород, метан и водяной пар, а свободный ки-слород в ней отсутствовал. Состав атмосферы в значительной степени определялся вулканическими газами. Из-за отсутствия кислорода не существовало озонового экрана, задерживающего ультрафиолетовое излучение Солнца. С течением времени за счет абиотических процессов в атмосфере планеты стал накапливаться кислород, началось формирование озонового слоя. Ветер способен даже изменять внешний вид растений, особенно в тех местообитаниях, например в альпийских зонах, где лимитирующее воздействие оказывают другие факторы. Экспериментально показано, что в открытых горных местообитаниях ветер лимитирует рост растений: когда построили стену, защищавшую растения от ветра, высота растений увеличилась. Большое значение имеют бури, хотя их действие сугубо локально. Ураганы и обычные ветры способны переносить животных и растения на большие расстояния и тем самым изменять состав сообществ. Атмосферное давление, по-видимому, не является лимитирующим фактором непосредственного действия, однако оно имеет прямое отношение к погоде и климату, которые оказывают непосредственное лимитирующее воздействие.

Водные условия создают своеобразную среду обитания организмов , отличающуюся от наземной прежде всего плотностью и вязкостью. Плотность воды примерно в 800 раз, а вязкость примерно в 55 раз выше, чем у воздуха. Вместе с плотностью и вязкостью важнейшими физико-химическими свойствами водной среды являются: температурная стратификация, то есть изменение температуры по глубине водного объекта и периодические изменения температуры во времени, а также прозрачность воды, определяющая световой режим под ее поверхностью: от прозрачности зависит фотосинтез зеленых и пурпурных водорослей, фитопланктона, высших растений. Как и в атмосфере, важную роль играет газовый состав водной среды. В водных местообитаниях количество кислорода, углекислого газа и других газов, растворенных в воде и потому доступных организмам, сильно варьируется во времени. В водоемах с высоким содержанием органических веществ кислород является лимитирующим фактором первостепенной важности. Кислотность - концентрация водородных ионов (рН) - тесно связана с карбонатной системой. Значение рН изменяется в диапазоне от 0 рН до 14: при рН=7 среда нейтральная, при рН<7 - кислая, при рН>7 - щелочная. Если кислотность не приближается к крайним значениям, то сообщества способны компенсировать изменения этого фактора - толерантность сообщества к диапазону рН весьма значительна. В водах с низким рН содержится мало биогенных элементов, поэтому продуктивность здесь крайне мала. Соленость - содержание карбонатов, сульфатов, хлоридов и т.д. - является еще одним значимым абиотическим фактором в водных объектах. В пресных водах солей мало, из них около 80 % приходится на карбонаты. Содержание минеральных веществ в мировом океане составляет в среднем 35 г/л. Организмы открытого океана обычно стеногалинны, тогда как организмы прибрежных солоноватых вод в общем эвригалинны. Концентрация солей в жидкостях тела и тканях большинства морских организмов изотонична концентрации солей в морской воде, так что здесь не возникает проблем с осморегуляцией. Течение не только сильно влияет на концентрацию газов и питательных веществ, но и прямо действует как лимитирующий фактор. Многие речные растения и животные морфологически и физиологически особым образом приспособлены к сохранению своего положения в потоке: у них есть вполне определенные пределы толерантности к фактору течения. Гидростатическое давление в океане имеет большое значение. С погружением в воду на 10 м давление возрастает на 1 атм (105 Па) . В самой глубокой части океана давление достигает 1000 атм (108 Па) . Многие животные способны переносить резкие колебания давления, особенно, если у них в теле нет свободного воздуха. В противном случае возможно развитие газовой эмболии. Высокие давления, характерные для больших глубин, как правило, угнетают процессы жизнедеятельности.

Почва

Почвой называют слой вещества, лежащий поверх горных пород земной коры . Русский ученый - естествоиспытатель Василий Васильевич Докучаев в 1870 году первым рассмотрел почву как динамическую, а не инертную среду. Он доказал, что почва постоянно изменяется и развивается, а в ее активной зоне идут химические, физические и биологические процессы. Почва формируется в результате сложного взаимодействия климата, растений, животных и микроорганизмов. В состав почвы входят четыре основных структурных компонента: минеральная основа (обычно 50-60 % общего состава почвы), органическое вещество (до 10 %), воздух (15-25 %) и вода (25-30 %). Минеральный скелет почвы - это неорганический компонент, который образовался из материнской породы в результате ее выветривания. Органическое вещество почвы образуется при разложении мертвых организмов, их частей и экскрементов. Не полностью разложившиеся органические остатки называются подстилкой, а конечный продукт разложения - аморфное вещество, в котором уже невозможно распознать первоначальный материал, - называется гумусом. Благодаря своим физическим и химическим свойствам гумус улучшает структуру почвы и ее аэрацию, а также повышает способность удерживать воду и питательные вещества. В почве обитает множество видов растительных и животных организмов, влияющих на ее физико-химические характеристики: бактерии, водоросли, грибы или простейшие одноклеточные, черви и членистоногие. Биомасса их в различных почвах равна (кг/га): бактерий 1000-7000, микроскопических грибов - 100-1000, водорослей 100-300, членистоногих - 1000, червей 350-1000. Главным топографическим фактором является высота над уровнем моря. С высотой снижаются средние температуры, увеличивается суточный перепад температур, возрастают количество осадков, скорость ветра и интенсивность радиации, понижаются атмосферное давление и концентрации газов. Все эти факторы влияют на растения и животных, обуславливая вертикальную зональность. Горные цепи могут служить климатическими барьерами. Горы служат также барьерами для распространения и миграции организмов и могут играть роль лимитирующего фактора в процессах видообразования.
Еще один топографический фактор - экспозиция склона. В северном полушарии склоны, обращенные на юг, получают больше солнечного света, поэтому интенсивность света и температура здесь выше, чем на дне долин и на склонах северной экспозиции. В южном полушарии имеет место обратная ситуация. Важным фактором рельефа является также крутизна склона. Для крутых склонов характерны быстрый дренаж и смывание почв, поэтому здесь почвы маломощные и более сухие. Для абиотических условий справедливы все рассмотренные законы воздействия экологических факторов на живые организмы. Знание этих законов позволяет ответить на вопрос: почему в разных регионах планеты сформировались разные экосистемы? Основная причина - своеобразие абиотических условий каждого региона.

Биотические отношения и роль видов в экосистеме

Ареалы распространения и численность организмов каждого вида ограничиваются не только условиями внешней неживой среды, но и их отношениями с организмами других видов. Непосредственное живое окружение организма составляет его биотическую среду, а факторы этой среды называются биотическими. Представители каждого вида способны существовать в таком окружении, где связи с другими организмами обеспечивают им нормальные условия жизни. Рассмотрим характерные особенности отношений различных типов. Конкуренция является в природе наиболее всеохватывающим типом отношений , при котором две популяции или две особи в борьбе за необходимые для жизни условия воздействуют друг на друга отрицательно. Конкуренция может быть внутривидовой и межвидовой. Внутривидовая борьба происходит между особями одного и того же вида, межвидовая конкуренция имеет место между особями разных видов. Конкурентное взаимодействие может касаться жизненного пространства, пищи или биогенных элементов, света, места укрытия и многих других жизненно важных факторов. Межвидовая конкуренция, независимо от того, что лежит в ее основе, может привести либо к установлению равновесия между двумя видами, либо к замене популяции одного вида популяцией другого, либо к тому, что один вид вытеснит другой в иное место или же заставит его перейти на использование иных ресурсов. Установлено, что два одинаковых в экологическом отношении и потребностях вида не могут сосуществовать в одном месте и рано или поздно один конкурент вытесняет другого. Это так называемый принцип исключения или принцип Гаузе.

1) отношения между живыми организмами являются одним из основных регуляторов численности и пространственного распределения организмов в природе;

2) негативные взаимодействия между организмами проявляются на начальных стадиях развития сообщества или в нарушенных природных условиях; в недавно сформировавшихся или новых ассоциациях вероятность возникновения сильных отрицательных взаимодействий больше, чем в старых ассоциациях;

3) в процессе эволюции и развития экосистем обнаруживается тенденция к уменьшению роли отрицательных взаимодействий за счет положительных, повышающих выживание взаимодействующих видов.

Все эти обстоятельства человек должен учитывать при проведении мероприятий по управлению экологическими системами и отдельными популяциями с целью использования их в своих интересах, а также предвидеть косвенные последствия, которые могут при этом иметь место.

Функционирование экосистем

Энергия в экосистемах.

Напомним, что экосистема - это совокупность живых организмов, обменивающихся непрерывно энергией , веществом и информацией друг с другом и с окружающей средой. Рассмотрим сначала процесс обмена энергией. Энергию определяют как способность производить работу. Свойства энергии описываются законами термодинамики.
Первый закон (начало) термодинамики или закон сохранения энергии утверждает, что энергия может переходить из одной формы в другую, но она не исчезает и не создается заново. Второй закон (начало) термодинамики или закон энтропии утверждает, что в замкнутой системе энтропия может только возрастать. Применительно к энергии в экосистемах удобна следующая формулировка: процессы, связанные с превращениями энергии, могут происходить самопроизвольно только при условии, что энергия переходит из концентрированной формы в рассеянную, то есть деградирует. Мера количества энергии, которая становится недоступной для использования, или иначе мера изменения упорядоченности, которая происходит при деградации энергии, есть энтропия. Чем выше упорядоченность системы, тем меньше ее энтропия. Таким образом, любая живая система, в том числе и экосистема, поддерживает свою жизнедеятельность благодаря, во-первых, наличию в окружающей среде в избытке даровой энергии (энергия Солнца); во вторых, способности за счет устройства составляющих ее компонентов эту энергию улавливать и концентрировать, а использовав - рассеивать в окружающую среду. Таким образом, сначала улавливание, а затем концентрирование энергии с переходом от одного трофического уровня к другому обеспечивает повышение упорядоченности, организации живой системы, то есть уменьшение ее энтропии.

Энергия и продуктивность экосистем

Итак, жизнь в экосистеме поддерживается благодаря непрекращающемуся прохождению через живое вещество энергии, передаваемой от одного трофического уровня к другому; при этом происходит постоянное превращение энергии из одних форм в другие. Кроме того, при превращениях энергии часть ее теряется в виде тепла.
Тогда возникает вопрос: в каких количественных соотношениях, пропорциях должны находиться между собой члены сообщества разных трофических уровней в экосистеме, чтобы обеспечивать свою потребность в энергии?

Весь запас энергии сосредоточен в массе органического вещества - биомассе, поэтому интенсивность образования и разрушения органического вещества на каждом из уровней определяется прохождением энергии через экосистему (биомассу всегда можно выразить в единицах энергии) . Скорость образования органического вещества называют продуктивностью. Различают первичную и вторичную продуктивность. В любой экосистеме происходит образование биомассы и ее разрушение, причем эти процессы всецело определяются жизнью низшего трофического уровня - продуцентами. Все остальные организмы только потребляют уже созданное растениями органическое вещество и, следовательно, общая продуктивность экосистемы от них не зависит. Высокие скорости продуцирования биомассы наблюдаются в естественных и искусственных экосистемах там, где благоприятны абиотические факторы, и особенно при поступлении дополнительной энергии извне, что уменьшает собственные затраты системы на поддержание жизнедеятельности. Такая дополнительная энергия может поступать в разной форме: например, на возделываемом поле - в форме энергии ископаемого топлива и работы, совершаемой человеком или животным. Таким образом, для обеспечения энергией всех особей сообщества живых организмов экосистемы необходимо определенное количественное соотношение между продуцентами , консументами разных порядков, детритофагами и редуцентами. Однако для жизнедеятельности любых организмов, а значит и системы в целом, только энергии недостаточно, они обязательно должны получать различные минеральные компоненты, микроэлементы, органические вещества, необходимые для построения молекул живого вещества.

Круговорот элементов в экосистеме

Откуда изначально берутся в живом веществе необходимые для построения организма компоненты? Их поставляют в пищевую цепь все те же продуценты. Неорганические минеральные вещества и воду они извлекают из почвы, CO2 - из воздуха, и из образованной в процессе фотосинтеза глюкозы с помощью биогенов строят далее сложные органические молекулы - углеводы, белки, липиды, нуклеиновые кислоты, витамины и т.п. Чтобы необходимые элементы были доступны живым организмам, они все время должны быть в наличии. В этой взаимосвязи реализуется закон сохранения вещества. Его удобно сформулировать следующим образом: атомы в химических реакциях никогда не исчезают, не образуются и не превращаются друг в друга; они только перегруппировываются с образованием различных молекул и соединений (одновременно происходит поглощение или выделение энергии). В силу этого атомы могут использоваться в самых различных соединениях и запас их никогда не истощается. Именно это происходит в естественных экосистемах в виде круговоротов элементов. При этом выделяют два круговорота: большой (геологический) и малый (биотический). Круговорот воды является одним из грандиозных процессов на поверхности земного шара. Он играет главную роль в связывании геологического и биотического круговоротов. В биосфере вода, непрерывно переходя из одного состояния в другое, совершает малый и большой круговороты. Испарение воды с поверхности океана, конденсация водяного пара в атмосфере и выпадение осадков на поверхность океана образуют малый круговорот. Если же водяной пар переносится воздушными течениями на сушу, круговорот становится значительно сложнее. В этом случае часть осадков испаряется и поступает обратно в атмосферу, другая - питает реки и водоемы, но в итоге вновь возвращается в океан речным и подземным стоком, завершая тем самым большой круговорот. Важное свойство круговорота воды заключается в том, что он, взаимодействуя с литосферой, атмосферой и живым веществом, связывает воедино все части гидросферы: океан, реки, почвенную влагу, подземные воды и атмосферную влагу. Вода - важнейший компонент всего живого. Грунтовые воды, проникая сквозь ткани растения в процессе транспирации, привносят минеральные соли, необходимые для жизнедеятельности самих растений. Обобщая законы функционирования экосистем, сформулируем еще раз основные их положения:

1) природные экосистемы существуют за счет не загрязняющей среду даровой солнечной энергии, количество которой избыточно и относительно постоянно;

2) перенос энергии и вещества через сообщество живых орга-низмов в экосистеме происходит по пищевой цепи; все виды живого в экосистеме делятся по выполняемым ими функциям в этой цепи на продуцентов, консументов, детритофагов и редуцентов - это биотическая структура сообщества; количественное соотношение численности живых организмов между трофическими уровнями отражает трофическую структуру сообщества, которая определяет скорость прохождения энергии и вещества через сообщество, то есть продуктивность экосистемы;

3) природные экосистемы благодаря своей биотической структуре неопределенно долго поддерживают устойчивое состояние, не страдая от истощения ресурсов и загрязнения собственными отходами; получение ресурсов и избавление от отходов происходят в рамках круговорота всех элементов.

Воздействие человека на экосистему

Воздействие человека на окружающую его природную среду может рассматриваться в разных аспектах в зависимости от цели изучения этого вопроса. С точки зрения экологии представляет интерес рассмотрение воздействия человека на экологические системы под углом зрения соответствия или противоречия действий человека объективным законам функционирования природных экосистем. Исходя из взгляда на биосферу как глобальную экосистему, все многообразие видов деятельности человека в биосфере приводит к изменениям: состава биосферы, круговоротов и баланса слагающих ее веществ; энергетического баланса биосферы; биоты. Направленность и степень этих изменений таковы, что самим человеком им дано название экологического кризиса. Современный экологический кризис характеризуется следующими проявлениями:

Постепенное изменение климата планеты вследствие изменения баланса газов в атмосфере;
- общее и местное (над полюсами, отдельными участками суши) разрушение биосферного озонового экрана;
- загрязнение Мирового океана тяжелыми металлами, сложными органическими соединениями, нефтепродуктами, радиоактивными веществами, насыщение вод углекислым газом;
- разрыв естественных экологических связей между океаном и водами суши в результате строительства плотин на реках, приводящий к изменению твердого стока, нерестовых путей и т.п.;
- загрязнение атмосферы с образованием кислотных осадков, высокотоксичных веществ в результате химических и фотохимических реакций;
- загрязнение вод суши, в том числе речных, служащих для питьевого водоснабжения, высокотоксичными веществами, включая диоксины, тяжелые металлы, фенолы;
- опустынивание планеты;
- деградация почвенного слоя, уменьшение площади плодородных земель, пригодных для сельского хозяйства;
- радиоактивное загрязнение отдельных территорий в связи с захоронением радиоактивных отходов, техногенными авариями и т.п.;
- накопление на поверхности суши бытового мусора и промышленных отходов, в особенности практически неразлагающихся пластмасс;
- сокращение площадей тропических и северных лесов, ведущее к дисбалансу газов атмосферы, в том числе сокращению концентрации кислорода в атмосфере планеты;
- загрязнение подземного пространства, включая подземные воды, что делает их непригодными для водоснабжения и угрожает пока еще мало изученной жизни в литосфере;
- массовое и быстрое, лавинообразное исчезновение видов живого вещества;
- ухудшение среды жизни в населенных местах, прежде всего урбанизированных территориях;
- общее истощение и нехватка природных ресурсов для развития человечества;
- изменение размера, энергетической и биогеохимической роли организмов, переформирование пищевых цепей, массовое размножение отдельных видов организмов;
- нарушение иерархии экосистем, увеличение системного однообразия на планете.

Заключение

Когда в середине шестидесятых годов двадцатого столетия проблемы окружающей среды оказались в центре внимания мировой общественности, встал вопрос: сколько времени в запасе у человечества? Когда оно начнет пожинать плоды пренебрежительного отношения к окружающей его среде? Ученые рассчитали: через 30-35 лет. Это время настало. Мы стали свидетелями глобального экологического кризиса, спровоцированного деятельностью человека. Вместе с тем последние тридцать лет не прошли даром: создана более твердая научная основа понимания проблем окружающей среды, образованы регламентирующие органы на всех уровнях, организованы многочисленные общественные экологические группы, приняты полезные законы и постановления, достигнуты некоторые международные договоренности. Однако ликвидируются в основном последствия, а не причины сложившегося положения. Например, люди применяют все новые средства борьбы с загрязнениями на автомобилях и стараются добывать все больше нефти вместо того, чтобы поставить под вопрос саму необходимость удовлетворения чрезмерных потребностей. Человечество безнадежно стремится спасти от вымирания несколько видов, не обращая внимание на собственный демографический взрыв, стирающий с лица земли природные экосистемы. Основной вывод из рассмотренного в учебном пособии материала совершенно ясен: системы, противоречащие естественным принципам и законам, неустойчивы. Попытки сохранить их становятся все более дорогостоящими и сложными и в любом случае обречены на неудачу. Чтобы принимать долгосрочные решения, необходимо обратить внимание на принципы, определяющие устойчивое развитие, а именно:

Стабилизация численности населения;
- переход к более энерго и ресурсосберегающему образу жизни;
- развитие экологически чистых источников энергии;
- создание малоотходных промышленных технологий;
- рециклизация отходов;
- создание сбалансированного сельскохозяйственного производства, не истощающего почвенные и водные ресурсы и не загрязняющего землю и продукты питания;
- сохранение биологического разнообразия на планете.

Список литературы

1. Небел Б. Наука об окружающей среде: Как устроен мир: В 2 т. - М.:Мир, 1993.
2. Одум Ю. Экология: В 2 т. - М.: Мир, 1986.
3. Реймерс Н. Ф. Охрана природы и окружающей человека Среды: Словарь-справочник. - М.:Просвещение, 1992. - 320 с.
4. Стадницкий Г. В., Родионов А. И. Экология.
5. М.: Высш. шк., 1988. - 272 с.

Экосистема - информационно саморазвивающаяся, термодинамически открытая совокупность биотических экологических компонентов и абиотических источников вещества и энергии, единство и функциональная связь которых в пределах характерного для определенного участка биосферы времени и пространства (включая биосферу в целом) обеспечивает превышение на этом участке внутренних закономерных перемещений вещества, энергии и информации над внешним обменом (и между соседними аналогичными совокупностями) и на основе этого неопределенно долгую саморегуляцию и развитие целого под управляющим воздействием биотических и биогенных составляющих.

Сложение экосистем в значительной мере зависит от их функциональной «предназначенности» и наоборот. Это замечание исходит из принципа экологической комплементарности (дополнительности): никакая функциональная часть экосистемы (экологический компонент, элемент и т. п.) не может существовать без других функционально дополняющих частей.

Рисунок 1. - Классификация природных экосистем

Закон формирования экосистемы: длительное существование организмов возможно лишь в рамках экологических систем, где их компоненты и элементы дополняют друг друга и соответственно приспособлены друг к другу. Это обеспечивает воспроизводство среды обитаний каждого вида и относительно неизменное существование всех экологических компонентов.

Второй экологический закон, по Ю. Н. Куражсковскому: «закон сохранения жизни: жизнь может существовать только в процессе движения через живое тело потока вещества, энергии и информации. Прекращение движения в этом потоке прекращает жизнь». Этот принцип справедлив и для любых экологических образований и вообще многих природных систем, даже непосредственно не связанных с живым.

В начале 70-х гг. Реймерс Н. Ф. сформулировал закон внутреннего динамического равновесия, а затем четыре основных следствия из него. Формулировка закона: вещество, энергия, информация и динамические качества отдельных природных систем (в том числе экосистем) и их иерархии взаимосвязаны настолько, что любое изменение одного из этих показателей вызывает сопутствующие функционально-структурные количественные и качественные перемены, сохраняющие общую сумму вещественно-энергетических, информационных и динамических качеств систем, где эти изменения происходят, или в их иерархии. Важные следствия из закона внутреннего динамического равновесия:

1. Любое изменение среды (вещества, энергии, информации, динамических качеств экосистем) неизбежно приводит к развитию природных цепных реакций, идущих в сторону нейтрализации произведенного изменения или формирования новых природных систем, образование которых при значительных изменениях среды может принять необратимый характер;

2. Взаимодействие вещественно-энергетических экологических компонентов (энергия, газы, жидкости, субстраты, организмы-продуценты, консументы и редуценты), информации и динамических качеств природных систем количественно нелинейно, т. е. слабое воздействие или изменение одного из показателей может вызвать сильные отклонения в других (и во всей системе в целом);

3. Производимые в крупных экосистемах изменения относительно необратимы - проходя по их иерархии снизу вверх, от места воздействия до биосферы в целом, они меняют глобальные процессы и тем самым переводят их на новый эволюционный уровень;

4. Любое местное преобразование природы вызывает в глобальной совокупности биосферы и в ее крупнейших подразделениях ответные реакции, приводящие к относительной неизменности эколого-экономического потенциала (правило «тришкина кафтана»), увеличение которого возможно лишь путем значительного возрастания энергетических вложений.

Исходя из данных, накопленных экологией, с учетом вышеприведенных обобщений возможно сформулировать принцип экологической (рабочей) надежности: эффективность экосистемы, ее способность к самовосстановлению и саморегуляции (в пределах естественных колебаний) зависит от ее положения в иерархии природных образований, степени взаимодействия ее компонентов и элементов, а также от частных приспособлений организмов, составляющих биоту экосистемы. Разнообразие, сложность и другие морфологические черты экосистемы имеют неодинаковое значение и подчинены степени ее эволюционной и сукцессионной зрелости. Если снижение разнообразия приводит к резкому дисбалансу в «притертости» частей экосистемы, а это случается достаточно часто, то упрощение системы чревато заметным снижением ее надежности.

Сдвигая динамически равновесное состояние природных систем с помощью значительных вложений энергии (путем агротехнических приемов), люди нарушают соотношение экологических компонентов, достигая увеличения полезной продукции (урожая) или состояния среды, благоприятного для жизни человека. Если эти сдвиги «гаснут» в иерархии природных систем и не вызывают термодинамического разлада, положение благоприятно. Однако излишнее вложение энергии и возникающий в результате вещественно-энергетический разлад ведут к снижению природно-ресурсного потенциала вплоть до опустынивания территории, происходящего без компенсанции: вместо цветущих садов возникают пустыни.

Структура экосистем

Экосистемы существуют везде - в воде и на земле, в сухих и влажных районах, в холодных и жарких местностях. Они по-разному выглядят, включают различные виды растений и животных. Однако в «поведении» всех экосистем имеются и общие аспекты, связанные с принципиальным сходством энергетических процессов, протекающих в них. Одним из фундаментальных правил, которым подчиняются все экосистемы, является принцип Ле Шателье-Брауна: при внешнем воздействии, выводящем систему из состояния устойчивого равновесия, это равновесие смещается в направлении, при котором эффект внешнего воздействия ослабляется.

Самая крупная природная экосистема на Земле - это биосфера. Граница между крупной экосистемой и биосферой столь же условна, как и между многими понятиями в экологии. Различие преимущественно состоит в такой характеристике биосферы, как глобальность и большая условная замкнутость (при термодинамической открытости). Прочие же экосистемы Земли вещественно практически не замкнуты.

Биомы - наиболее крупные наземные экосистемы, соответствующие основным климатическим зонам Земли (пустынные, травянистые, лесные); водные экосистемы - основные экосистемы, существующие в водной сфере (гидросфере).

Любую экосистему прежде всего можно разделить на совокупность организмов и совокупность неживых (абиотических) факторов окружающей природной среды (рис. 2).

В свою очередь экотоп состоит из климата во всех многообразных его проявлениях и геологической среды (почв и грунтов), называемой эдафотопом. Эдафотоп - это то, откуда биоценоз черпает средства для существования и куда выделяет продукты жизнедеятельности.

Структура живой части биогеоценоза определсяется трофоэнергетическими связями и отношениями, в соответствии с которыми выделяют три главных функциональных компонента: комплекс автотрофных организмов-продуцентов, обеспечивающих органическим веществом и, следовательно, энергией остальные организмы (фитоценоз (зеленые растения), а также фото- и хемосинтезирующие бактерии); комплекс гетеротрофных организмов-консументов, живущих за счёт питательных веществ, созданных продуцентами; во-первых, это зооценоз (животные), во-вторых, бесхлорофилльные растения; комплекс организмов-редуцентов, разлагающих органические соединения до минерального состояния (микробиоценоз, а также грибы и прочие организмы, питающиеся мертвым органическим веществом).

Рисунок 2. - Структура экосистемы

Примеры экосистем: участок лесного массива, пруд, гниющий пень, особь, заселенная микробами или гельминтами - являются экосистемами. Понятие экосистемы, таким образом, применимо к любой совокупности живых организмов и их местообитания.

Выделяют четыре типа экосистем:

    элементарные (микроэкосистемы ) – экосистемы самого нижнего ранга, по размеру сходные с небольшими компонентами среды: ствол гниющего дерева, небольшой водоем, зубная полость человека и т.п.;

    локальные (мезоэкосистемы ) (лесной массив, река, пруд и т.д.),

    зональные (макроэкосистемы ) или биомы – крупные наземные экосистемы, имеющие очень большое распространение (океан, континенты, материки, природные зоны – тундра, тайга, дождевые тропические леса, саванны и др.). Каждый биом состоит из множества экосистем, связанных между собой. Взаимосвязь всех экосистем нашей планеты создает глобальную гигантскую экосистему, называемую Биосферой (Экосферой).

3. Классификации экосистем:

В зависимости от происхождения экосистемы подразделяются на:

1) природные (естественные) экосистемы ‑ биологический круговорот, в которых, протекает без прямого участия человека. Подразделяются на: наземные (лесные массивы, степи, пустыни) и водные: пресноводные и морские (болота, озера, пруды, реки, моря).

2) антропогенные (искусственные) экосистемы – экосистемы, созданные человеком для извлечения выгоды, которые способны существовать только при его поддержке (агроэкосистемы ‑ искусственные экосистемы, возникающие в результате сельскохозяйственной деятельности человека; техноэкосистемы ‑ искусственные экосистемы, возникающие в результате промышленной деятельности человека; урбаноэкосистемы (лат. городской) ‑ экосистемы, возникающие в результате создания поселений человека).

3) социоприродные – естественные системы, измененные человеком (парк, водохранилище).

Существуют и переходные между природными и антропогенными типы экосистем (экосистемы естественных пастбищ, используемых человеком для выпаса сельскохозяйственных животных).

По источнику энергии, который обеспечивает их жизнедеятельность, экосистемы подразделяют на следующие типы:

1) автотрофные экосистемы ‑ это экосистемы, которые сами обеспечивают себя энергией, получаемой от Солнца, за счет собственных фото- или хемотрофных организмов. К этому типу относится большинство природных экосистем и некоторые антропогенные.

2) гетеротрофные экосистемы ‑ это такие экосистемы, которые получают энергию, используя готовые органические соединения, синтезированные организмами, не являющимися компонентами данных экосистем, или использующих энергию созданных человеком энергетических установок. Это могут быть как природные (напр., экосистемы океанических глубин, использующие падающие сверху органические остатки), так и антропогенные (напр., города с их линиями электропередач).

4. Структура экосистемы. Под структурой экосистемы понимают четко выраженные закономерности в соотношениях и связях его частей. Структура экосистемы многопланова.

Различают видовую , пространственную , экологическую , трофическую и пограничную структуры.

Видовая структура экосистемы это разнообразие видов, взаимосвязь и соотношение их численности. Различные сообщества, входящие в состав экосистемы, состоят из разного числа видов – видового разнообразия . Это важнейшая качественная и количественная характеристика устойчивости экосистемы. Основа биологического разнообразия в живой природе.Видовое разнообразие связано с разнообразием условий среды обитания. В таежном лесу,например, на площади в 100 м 2 , как правило, произрастают растения около 30 различных видов, а на лугу вдоль реки – в два раза больше.В зависимости от разнообразия видов различают богатые (тропические леса, долины рек, коралловые рифы) и бедные (пустыни, северные тундры, загрязненные водоемы) экосистемы . Главными лимитирующими факторами являются температура, влажность и недостаток пищи. В свою очередь, видовое разнообразие служит основой экологического разнообразия - разнообразия экосистем. Совокупность генетического, видового и экологического разнообразия составляет биологическое разнообразие планеты – главное условие устойчивости все жизни .

Пространственная структура экосистемы .

Популяции разных видов в экосистеме распределены определенным образом и образуют пространственную структуру .

Различают вертикальную и горизонтальную структуры экосистемы.

Основу вертикальной структуры (ярусность) формирует растительность.

Обитая совместно, растения одинаковой высоты создают своего рода этажи ярусы элементы вертикальной структуры фитоценоза. Выделяют ярусность надземную и подземную . Пример надземной – в лесу, высокие деревья составляют первый (верхний) ярус, второй ярус формируется из молодых особей деревьев верхнего яруса и из взрослых деревьев, меньших по высоте (вместе образуют ярус А – древостой). Третий ярус состоит из кустарников (ярус В – подлесок), четвертый – из высоких трав (ярус С – травяной). Самый нижний ярус, куда попадает совсем мало света, составляют мхи и низкорослые травы (ярус D – мохово-лишайниковый). Ярусность наблюдается также в травянистых сообществах (лугах, степях, саваннах).

Подземная ярусность связана с разной глубиной проникновения в почву корневых систем растений: у одних корни уходят глубоко в почву, достигают уровня грунтовых вод, другие имеют поверхностную корневую систему, улавливающую воду и элементы питания из верхнего почвенного слоя. Животные тоже приспособлены к жизни в том или ином растительном ярусе (некоторые вообще не покидают свой ярус). Следовательно, ярус можно представить как структурную единицу биоценоза, которая отличается от других его частей определенными экологическими условиями, набором растений, животных, микроорганизмов.

Горизонтальная структура (мозаичность, пятнистость) экосистемы образуется в результате неоднородности микрорельефа, свойств почвы, средообразующей деятельности растений и животных (например: в результате деятельности человека – выборочная рубка, кострища и др. или животных – выбросы почвы при копке нор, последующее ее зарастание, образование муравейников, вытаптывание и стравливание травостоя копытными и т.д., вывалов древостоя во время ураганов и т.д.)

Благодаря вертикальной и горизонтальной структуре обитающие в экосистеме организмы более эффективно используют минеральные вещества почвы, влагу, световой поток.

Экологическая структура экосистемы складывается из различных экологических групп организмов, которые могут иметь различный видовой состав, но занимать сходные экологические ниши. Каждая из экологических групп выполняет в сообществе определенные функции: продуцировать органическое вещество, используя источники солнечной и химической энергии, потреблять его, преобразовывать отмершую органику в неорганические вещества, тем самым вновь возвращать его в круговорот веществ.

Важным признаком структурной характеристики экосистемы является наличие границ обитания различных сообществ. Они, как правило, условны. Как результат возникает достаточно обширная пограничная (краевая) зона, отличающаяся особыми условиями. Растения и животные, характерные для каждого из соприкасающихся сообществ, проникают на сопредельные территории, создавая при этом специфическую «опушку», пограничную полосу – экотон . Так возникает пограничный или краевой эффект – увеличение разнообразия и плотности организмов на окраинах (опушках) соседствующих сообществ и в переходных поясах между ними.

Термин «экосистема» был предложен в 1935 г. английским ботаником Артуром Тенсли. Тенсли считал, что экосистемы представляют собой основные природные единицы на поверхности земли. Это не только комплекс живых организмов, но и все сочетание физических факторов. Всюду, где мы наблюдаем отчетливое единство растений, животных и микроорганизмов, объединенных отдельным участком окружающей среды, мы имеем пример экосистемы.

Экосистема (экологическая система) - основная функциональная единица экологии, представляющая собой единство живых организмов и среды их обитания, организованное потоками энергии и биологическим круговоротом веществ.

Экосистемы состоят из биотического и абиотического компонентов. Биотический компонент подразделяется на автотрофные и гетеротрофные организмы.

Автотрофы - синтезируют органические вещества из неорганических за счет фотосинтеза (за исключением хемотрофных бактерий).

Гетеротрофы - используют химическую энергию, содержащуюся в потребляемой пище.

Абиотический (неживой) компонент включает физические и химические факторы окружающей среды.

Биотическая структура экосистем включает основные категории организмов, взаимодействующих друг с другом: продуценты , консументы, детритофаги и редуценты.

Продуценты - это в основном зеленые растения, осуществляющие фотосинтез: используя световую энергию, продуцируют сложные органические соединения своего тела из простых неорганических. При этом энергия света накапливается в органических соединениях, из которых построены ткани растений.

Консументы - самые разнообразные организмы от микроскопических бактерий до громадных синих китов. Это все животные и другие организмы, которые питаются органическим веществом, используя его как источник энергии и материал для построения своего тела.

Животных, питающихся непосредственно продуцентами называют первичными консументами . Их самих употребляют в пищу вторичные консументы . Первичные консументы, питающиеся только растениями, называются растительноядными (фитофаги), консументы второго и более высоких порядков - плотоядными. Виды, употребляющие в пищу как растения, так и животных, относят к всеядным.

Детрит - мертвые растительные и животные остатки, а организмы, питающиеся им - детритофаги : грифы, земляные черви, раки, термиты, муравьи и т. д. Детритофагами могут питаться более крупные организмы.

Редуценты - грибы и бактерии. В любой системе детритофаги и редуценты играют одну и ту же роль - они питаются мертвым органическим веществом и при этом разлагают его.

Итак, во всякой экосистеме можно выделить следующие компоненты : неорганические вещества (углерод, азот, углекислый газ, вода и т. д.), вступающие в круговороты; органические соединения (белки, углеводы, липиды и т. д.), связывающие биотическую и абиотическую части; климатический режим (температура и другие физические факторы); продуценты; консументы; редуценты.

Таким образом, структуру экосистемы образуют три уровня (продуценты, консументы, редуценты) трансформации энергии и два круговорота: твердых и газообразных веществ.



Похожие статьи