Схема виды антропогенных факторов. Антропогенные факторы и их влияние на природную среду

Антропогенные факторы, их влияние на организмы.

Антропогенные факторы - это формы деятельности человека, влияющие на живые организмы и условия среды их обитания:рубка, вспашка, орошение, выпас, строителсьтво водохранилищ, водо–нефте-газопроводов, прокладка дорог, ЛЭП и др. Воздействие деятельности человека на живые организмы и условия среды их обитания могут быть прямыми и косвенными. Например, вырубая деревья в лесу при заготовке древесины он оказывает прямое воздействия на вырубаемые деревья (валка, очистка от ветвей, распиловка, вывоз и др.) и одновременно оказывает косвенное воздействие на растения древесного полога, изменяя условия среды их обитания: освещение, температуру, циркуляции воздуха и т.д. На лесосеке из-за изменения условий среды обитания дальше не смогут жить и развиваться тенелюбивые растения и все организмы, связанные с ними. Среди абиотических факторов выделяют климатические (освещение, температура, влажность, ветер, давление и др.) и гидрографические (вода, течение, соленость, проточный стоячий и др) факторы.

Факторы, влияющие на организмы и условия среды их обитания изменяются в течение суток, по сезоном года и по годам (температура, количество осадков, освещение и др). Поэтому различают регулярно меняющиеся и возникающие спонтанно(неожиданно) факторы. Регулярно меняющиеся факторы называются периодическими факторами. К ним относятся смена дня и ночи, сезонов года, приливы и отливы и др. К воздействию этих факторов живые организмы адаптировались в результате длительной эволюции. Факторы, возникающие спонтанно называются непериодическими. К ним относятся извержение вулканов, наводнение, пожары, селевые потоки, нападение хищника на жертву и др. К воздействию не пероидических факторов живые организмы не адаптированы и не имеют каких-либо приспособлений. Поэтому они приводят к гибели, увечью и болезням живых организмов, разрушают их местообитания.

Непериодические факторы человек нередко использует в своих интересах. Например, для улучшения возобновления травостоя пастбищ и сенокосов он устраивает весной пал, т.е. поджигает старую растительность; используя пестециды и гербициды уничтожает вредителей сельскохозяйственных культур, сорняков полей и огородов, уничтожает болезнотворных микроогранизмов, бактерии и беспозвоночных и тд

Совокупность факторов одного рода составляет верхний уровень понятий. Нижний уровень понятий связан с познанием отдельных экологических факторов (табл. 3).

Таблица 3 - Уровни понятия «экологический фактор»

Несмотря на большое разнообразие экологических факторов, в характере их воздействия на организмы и в ответных реакциях живых существ можно выявить ряд общих закономерностей.

Закон оптимума . Каждый фактор имеет лишь определенные пределы положительного влияния на организмы. Благо­приятная сила воздействия называется зоной оптимума экологи­ческого фактора или просто оптимумом для организмов данного вида (рис. 5).

Рисунок 5 – Зависимость результаты действия экологического фактора от его интенсивности

Чем сильнее отклонения от оптимума, тем больше выраже­но угнетающее действие данного фактора на организмы (зона пессимума ). Максимально и минимально переносимые значения фактора - это критические точки, за пределами которых сущест­вование уже невозможно, наступает смерть. Пределы выносливо­сти между критическими точками называют экологической валентностью живых существ по от­ношению к конкретному фак­тору среды. Точки, ограничивающие его, т.е. максимальная и минимальная температуры, пригодные для жизни, - это пределы устойчивости. Между зоной оптимума и пределами устойчивости растение испытывает все нарастающий стресс, т.е. речь идет о стрессовых зонах, или зонах угнетения в рамках диапазона устойчивости. По мере удаления от оптимума в конечном итоге по достижении пределов устойчивости организма происходит его гибель.

Виды, для существования которых необходимы строго определенные экологические условия, маловыносливые виды называют стенобионтными (узкая экологическая валентность), а те, которые способны приспосабли­ваться к разной экологической обстановке, выносливые - эврибионтными (широкая экологическая валентность) (рис. 6).

Рисунок 6 – Экологическая пластичность видов (по Ю. Одум, 1975)

Эврибионтность способствует широкому распространению видов. Стенобионтность обычно ограничивает ареалы.

Отношение организмов в колебаниям того или иного определенного фактора выражается прибавлением приставки эври- или стено- к названию фактора. Например, по отношению к температуре различают эври- и стенотермные организмы, к концентрации солей – эври- и стеногалинные, к свету – эври- и стенофотные и т.д.

Закон минимума Ю.Либиха. Немецкий агроном Ю.Либих в 1870 году в первые установил, что урожай (продукция) зависит от фактора, находящегося в среде обитания в минимуме, и сформулировая закон минимума, который гласит: “веществом, находящимся в минимуме, управляется урожай и определяется величина и устойчивость последного во времени”.

Формилируя закон Либих имел в виду, лимитирущие воздействие на растений жизненно важных химических элементов, присутствующих в среде их обитания в небольших и непостоянных количествах. Эти элементы называются микроэлементами. К ним относятся: медь, цинк, железо, бор, кремний, молибден, ванадий, кобальт, хлор, иод, натрий. Микроэлементы, подобно витаминам, действуют как катализаторы, химические элементы фосфор, калий, кальций, магний, сера, требующиеся организмам в сравнительно большом почестве называются макроэлементами. Но, если этих элементов в почве содержится больше, чем необходимо для нормальный жизнедеятельности организмов, то они также являются лимитирующими. Таким образом, микро- и макроэлементов в среде обитания живых организмов должно содержаться столько, сколько небоходимо для их нормального существования и жизнедеятельности. Измение содержания микро- и макроэлементов в сторону уменьшения или увеличения от необходимого количества-лимитирует существование живых организмов.

Ограничивающие факторы среды определяют географический ареал вида. Природа этих факторов может быть различной. Так, продвижение вида на север может лимитироваться недостатком тепла, в пустынные районы - недостатком влаги или слишком вы­сокими температурами. Ограничивающим распространение факто­ром могут служить и биотические отношения, например занятость данной территории более сильным конкурентом, либо недостаток опылите­лей для растений.



Закон толерантности В.Шелфорда. Любой организм в природе способен переносить воздействие периодических факторов как в сторону уменшения, так и в сторону их увеличение до определенного предела в течение определенного времени. На основе этой способности живых организмов американский зоолог В. Шелфорд в 1913 году сформулировал закон толерантности (от лат «tolerantica»-терпение: способность организма переносить вляние факторов среды обитания до определенного предела), который гласит “Отсутствие или невозможность развития экосистемы определяется не только недостатом (количественно или качественно), но и избытком любого из факторов (света, тепла, воды), уровень которых может оказаться близким к пределам переносимого данным организмым”. Эти два предела: экологический минимум и эклогический максимум, воздействие которых выдерживает живой организм, называются пределами толерантности (терпимости), например, если некий организм способен жить при температуре от 30°С до - 30°С, то предел его толерантности лежит в пределах этих температур.

Эвробионты, благодаря широкой толерантности, или широкой экологической амплитуде, широко распространены, более устойчивы к воздействию факторов среды, т е. более жизнестойки. Отклонения воздействия факторов от оптимума угнетает живой организм. Экологичесая валентность у одних организмов узкая (например, снежный барс, грецкий орех, в пределах умеренной зоны), у других-широкая (например, волк, лиса, заяц, тростник, одуванчик и др.).

После открытия этого закона были проведены многочисленные исследования, благодаря которым стали известны пределы существования для многих растений и животных. Таким примером является влияние загрязняющего атмосферный воздух вещества на организм человека. При значениях концентрации С лет человек погибает, но необратимые изменения в его организме происходят при значительно меньших концентрациях: С лим. Следовательно, истинный диапазон толерантности определяется именно этими показателями. Значит, их необходимо экспериментально определять для каждого загрязняющего или любого вредного химического соединения, и не допускать превышения его содержания в конкретной среде. В санитарной охране окружающей среды важны не нижние пределы устойчивости к вредным веществам, а верхние пределы, т.к. загрязнение окружающей среды – это и есть превышение устойчивости организма. Ставится задача или условие: фактическая концентрация загрязняющего вещества С факт не должна превышать С лим. С факт < С лим. С ¢ лим является предельно допустимой концентрации С ПДК или ПДК.

Взаимодействие факторов. Оптимальная зона и пределы вы­носливости организмов по отно­шению к какому-либо фактору среды могут смещаться в зависи­мости от того, с какой силой и в каком сочетании действуют одно временно другие факторы. Например, жару легче перено­сить в сухом, но не во влажном воздухе. Угроза замерзания зна­чительно выше при морозе с силь­ным ветром, чем в безветренную погоду. Таким образом, один и тот, же фактор в сочетании с дру­гими оказывает неодинаковое экологическое воздействие. Со­здается эффект частичного взаимозамещения факторов. Например, увядание растений можно при­остановить путем как увеличения количества влаги в почве, так и снижения температуры воздуха, уменьшающего испарение.

Однако взаимная компенсация действия факторов среды имеет определенные пределы, и полностью заменить один из них другим нельзя. Крайний дефицит тепла в полярных пустынях нель­зя восполнить ни обилием влаги, ни круглосуточной освещен­ностью.

Группы живых организмов по отношению к факторам среды:

Свет или солнечная радиация . Всем живым организмам для осуществления процессов жизнедеятельности необходима энергия, поступающая извне. Основным источником ее является солнечная радиация, на которую приходится около 99,9% в общем балансе энергии Земли. Альбедо – доля отраженного света.

Важнейшие процессы, протекающие у растений и животных с участием света:

Фотосинтез . В среднем 1-5% падающего на растения света используется для фотосинтеза. Фотосинтез – источник энергии для всей остальной пищевой цепи. Свет необходим для синтеза хлорофилла. С этим связаны все адаптации растений по отношению к свету – листовая мозаика (рис. 7), распределение водорослей в водных сообществах по слоям воды и т.д.

По требованию к условиям освещения принято делить растения на следующие экологические группы:

Светолюбивые или гелиофиты – растения открытых, постоянно хорошо освещаемых местообитаний. Их световые адаптации заключаются в следующем – мелкие листья, часто рассеченные, в полдень могут повернуться ребром к солнцу; листья толще, могут быть покрыты кутикулой или восковым налетом; клетки эпидермиса и мезофилла мельче, палисадная паренхима многослойная; междоузлия короткие и т.д.

Тенелюбивые или сциофиты – растения нижних ярусов тенистых лесов, пещер и глубоководные растения; они плохо переносят сильное освещение прямыми солнечными лучами. Могут фотосинтезировать даже при очень низкой освещенности; листья темно-зеленые, крупные и тонкие; палисадная паренхима однослойная и представлена более крупными клетками; ярко выражена листовая мозаика.

Теневыносливые или факультативные гелиофиты – могут переносить большее или меньшее затенение, но хорошо растут и на свету; они легче других растений перестраиваются под влиянием изменяющихся условий освещения. К этой группе относятся лесные и луговые травы, кустарники. Адаптации формируются в зависимости от условий освещения и могут перестраиваться при изменении светового режима (рис. 8). Примером могут служить хвойные деревья, которые выросли на открытых пространствах и под пологом леса.

Транспирация - процесс испарения воды листьями растений для снижения температуры. Примерно 75 % падающей на растения солнечной радиации расходуется на испарение воды и таким образом усиливает транспирацию; это важно в связи с проблемой сохранения воды.

Фотопериодизм . Важен для синхронизации жизнедеятельности и поведения растений и животных (особенно их размножения) с временами года. Фототропизм и фотонастии у растений важны для обеспечения растениям достаточной освещенности. Фототаксис у животных и одноклеточных растений, необходим для нахождения подходящего местообитания.

Зрение у животных . Одна из главнейших сенсорных функций. Понятие видимого света для различных животных различно. Гремучие змеи видят инфракрасную часть спектра; пчелы – ближе к ультрафиолетовой области. У животных, обитающих в местах, куда не проникает свет, глаза могут быть полностью или частично редуцированы. Животные, ведущие ночной или сумеречный образ жизни плохо различают цвета и видят все в черно-белом изображении; кроме того, у таких животных размер глаз часто гипертрофирован. Свет, как средство ориентации играет важную роль в жизни животных. Многие птицы во время перелетов ориентируются с помощи зрения по солнцу или звездам. Такой же способностью обладают некоторые насекомые, например, пчелы.

Прочие процессы . Синтез витамина Д у человека. Однако, длительное воздействие ультрафиолетовых лучей может вызывать повреждение тканей, особенно у животных; в связи с этим выработались защитные приспособления – пигментация, поведенческие реакции избегания и т.п. Определенное сигнальное значение у животных играет биолюминесценция, то есть способность светиться. Световые сигналы, испускаемые рыбами, моллюсками, другими водными организмами, служат при привлечения добычи, особей противоположного пола.

Температура . Тепловой режим – важнейшее условие существования живых организмов. Главным источником тепла является солнечное излучение.

Границы существования жизни - это температуры, при которых возможно нормальное строение и функционирование белков, в среднем от 0 до +50 о С. Однако, целый ряд организмов обладает специализированными ферментными системами и приспособлены к активному существованию при температуре тела, выходящей за указанные пределы (табл. 5). Самая низкая при которой найдены живые существа -200°С, а самая высокая до +100 °С.

Таблица 5 - Температурные показатели различных сред жизни (0 С)

По отношению к температуре все организмы подразделяются на 2 группы: холодолюбивые и теплолюбивые.

Холодолюбивые (криофилы) способны жить в условиях относительно низких температур. При температуре -8°С живут бактерии, грибы, моллюски, черви, членистоногие и др. Из растений: древесные в Якутии выдерживают температуру -70°С. В Антарктиде при такой же температуре обитают лишайники, отдельные виды водорослей, пингвины. В лабораторных условиях семена, споры некоторых растений, нематоды переносят температуру абсолютного нуля -273,16°С. Приостановка всех жизненных процессов называется анабиозом .

Теплолюбивые организмы (термофилы ) – обитатели жарких районов Земли. Это – беспозвоночные (насекомые, паукообразные, моллюски, черви), растения. Многие виды организмов способны переносить очень высокие температуры. Например, пресмыкающиеся, жуки, бабочки выдерживают температуру до +45-50°С. На Камчатке живут сине-зеленые водоросли при температуре +75-80°С, верблюжья колючка переносит температуру +70°С.

Беспозвоночные, рыбы, пресмыкающиеся, земноводные лишены способности поддерживать постоянную температуру тела в узких границах. Их называют пойкилотермными или хладнокровными. Они зависят от уровня тепла, поступающего извне.

Птицы и млекопитающие способны поддерживать постоянную температуру тела независимо от окружающей температуры. Это – гомойотермные, или теплокровные организмы . Они не зависят от внешних источников тепла. Благодаря высокой интенсивности обмена веществ у них вырабатывается достаточное количество тепла, которое может сохраняться.

Температурные адаптации организмов : Химическая терморегуляция - активное увеличение теплопродукции в ответ на понижение температуры; физическая терморегуляция - изменение уровня теплоотдачи, способность удерживать тепло или наоборот рассеивать тепло. Волосяной покров, распределение жировых запасов, размер тела, строение органов и т.п.

Поведенческие реакции – перемещение в пространстве позволяет избегать неблагоприятных температур, спячка, оцепенение, сбивание в кучу, миграции, рытье нор и т.д.

Влажность. Вода – важный экологический фактор. Все биохимические реакции протекают в присутствии воды.

Таблица 6 –Содержание воды в различных организмах (% от массы тела)

Антропогенные факторы – это совокупность влияний хозяйственной деятельности человека на окружающую природную среду как среду обитания других видов.

Природные экосистемы обладают значительной устойчивостью и упругостью, что помогает переносить периодические нарушающие воздействия и нередко довольно хорошо восстанавливаться после многих периодических антропогенных нарушений. Экосистемы от природы адаптированы к таким воздействиям.

Однако хронические (постоянные) нарушения могут привести к выраженным и устойчивым негативным последствиям, особенно в случае загрязнения атмосферного воздуха, природных вод и почв опасными химическими веществами. В таких случаях эволюционная история адаптации уже не помогает организмам и антропогенный стресс может стать для них основным лимитирующим фактором.

Антропогенный стресс экосистем подразделяют на две группы:

- острый стресс , для которого характерно внезапное начало, быстрая интенсивность и небольшая продолжительность нарушений;

- хронический стресс , при котором нарушения невысокой интенсивности долго продолжаются или часто повторяются, т.е. это «постоянно беспокоящее» воздействие.

Природные экосистемы обладают значительной способностью справляться с острым стрессом или восстанавливаться после него. Степень стабильности экосистем различна и зависит от жесткости воздействия и от эффективности внутренних механизмов. Выделяют два типа стабильности:

    Резистентная устойчивость – способность оставаться в устойчивом состоянии под нагрузкой.

    Упругая устойчивость – способность быстро восстанавливаться.

Хроническое воздействие антропогенных факторов вызывает существенные изменения в структуре и функционировании экосистем, которые могут иметь катастрофические последствия. Последствия хронического стресса труднее оценить – иногда лишь спустя многие годы могут проявиться последствия стресса. Так, потребовались годы, чтобы выявить связь между заболеванием раком и курением или хроническим, слабым ионизирующим излучением.

Если человечество в ближайшие десятилетия не приложит усилий по сдерживанию процесса ухудшения качества окружающей среды, то загрязняющие вещества вполне могут стать лимитирующим фактором для индустриальной цивилизации.

3.4. Экологическая валентность видов и лимитирующие факторы

Амплитуда колебания фактора, при которой могут существовать организмы, называется экологической валентностью вида . Организмы с широкой экологической валентностью называются эврибионтными, с узкой – стенобионтными.

Рисунок 2. Сравнение относительных пределов толерантности стенотермных и эвритермных организмов

(по Ю. Одуму, 1986)

У стенотермных видов минимум, оптимум и максимум сближены (рис. 2). Стенобионтность и эврибионтность характеризуют различные типы приспособления организмов к выживанию. Так, по отношению к температуре различают эври- и стенотермные организмы, по отношению к содержанию солей – эври- и стеногалинные, по отношению к свету – эври- и стенофотные, по отношению к пище – эври- и стенофагные.

Экологическая валентность вида тем шире, чем в более разнообразных условиях он обитает. Так, прибрежные формы более эвритермны и эвригалинны, чем морские, где температура и соленость воды более постоянны.

Таким образом, организмы могут характеризоваться как экологическим минимумом , так и экологическим максимумом . Диапазон между этими двумя величинами называют пределом толерантности .

Любое условие, приближающиеся к пределу толерантности или превышающее его, называется лимитирующим условием или лимитирующим фактором. Лимитирующий фактор – фактор среды, выходящий за пределы выносливости организма. Лимитирующий фактор ограничивает любое проявление жизнедеятельности организма. С помощью лимитирующих факторов регулируется состояние организмов и экосистем.

Лимитирующим фактором может быть не только недостаток, но и избыток некоторых факторов, например, таких как тепло, свет и вода.При стационарном состоянии лимитирующим будет то жизненно важное вещество, доступные количества которого наиболее близки к необходимому минимуму. Эта концепция известна как « закон минимума» Либиха .

В 1840 г. немецкий химик Ю.Либих впервые сделал вывод о том, что выносливость организма определяется самым слабым звеном в цепи его экологических потребностей. Данный вывод был сделан в результате изучения влияния разнообразных факторов на рост растений. Было установлено, что растения часто лимитируются не теми элементами питания, которые требуются в больших количествах (например, СО 2 и вода, которые в избытке), а теми, которые требуются в ничтожных количествах (например, цинк), но которых и в окружающей среде очень мало.

Закон «минимума» Либиха имеет два вспомогательных принципа :

1. Ограничительный – закон строго применим только в условиях стационарного состояния, т.е. когда приток и отток энергии и веществ сбалансированы. При нарушении равновесия изменяется скорость поступления веществ и экосистема начинает зависеть также от других факторов.

2. Взаимодействие факторов – высокая концентрация или доступность одного вещества или фактора может изменять скорость потребления элемента питания, содержащегося в минимальном количестве. Иногда организм способен заменять, хотя бы частично, дефицитный элемент другим, химически близким.

Изучая различное лимитирующее действие экологических факторов (таких как свет, тепло, вода) американский зоолог Виктор Эрнест Шелфорд в 1913 г., пришел к выводу, что лимитирующим фактором может быть не только недостаток, но и избыток факторов. В экологию представление о лимитирующем влиянии максимума наравне с минимумом известно как «закон толерантности» В.Шелфорда .

Организмы могут иметь широкий диапазон толерантности в отношении одного фактора и узкий диапазон в отношении другого. Организмы с широким диапазоном толерантности по всем факторам среды обычно наиболее широко распространены.

Важность концепции лимитирующих факторов состоит в том, что она дает экологу отправную точку при исследовании сложных ситуаций. При исследовании экосистем исследователь в первую очередь должен уделять внимание тем факторам, которые функционально наиболее важны.

Масштабы деятельности человечества в последние несколько сотен лет неизмеримо возросли, значит, появились и новые антропогенные факторы. Примеры воздействия, место и роль человечества в изменении среды обитания — обо всем этом далее в статье.

жизни?

Часть природы Земли, в которой обитают организмы, — это их среда обитания. Возникающие при этом взаимоотношения, образ жизни, продуктивность, численность существ изучает экология. Выделяют основные компоненты природы: почву, воду и воздух. Есть организмы, которые приспособлены к обитанию в одной среде или в трех, например прибрежные растения.

Отдельные элементы, взаимодействующие с живыми существами и между собой, — экологические факторы. Каждый из них является незаменимым. Но в последние десятилетия планетарное значение приобретают антропогенные факторы. Хотя еще полвека назад влиянию общества на природу не уделяли достаточно внимания, а 150 лет назад сама наука экология находилась в зачаточном состоянии.

Что такое экологические факторы?

Все многообразие воздействия общества на окружающую среду — это и есть антропогенные факторы. Примеры отрицательного влияния:

  • сокращение запасов полезных ископаемых;
  • сведение лесов;
  • загрязнение почв;
  • охота и рыболовство;
  • истребление дикорастущих видов.

Положительное влияние человека на биосферу связано с природоохранными мероприятиями. Ведется лесовозобновление и лесонасаждение, озеленение и благоустройство населенных пунктов, акклиматизация животных (млекопитающих, птиц, рыб).

Что делается для улучшения взаимоотношений человека и биосферы?

Вышеперечисленные примеры антропогенных экологических факторов, вмешательства человека в природу свидетельствуют о том, что воздействие может быть положительным и отрицательным. Эти характеристики носят условный характер, потому что позитивное влияние при изменившихся условиях нередко становится своей противоположностью, т. е. приобретает негативную окраску. Деятельность населения чаще приносит вред природе, чем пользу. Объясняется этот факт нарушением природных закономерностей, действующих в течение миллионов лет.

Еще в 1971 году Организацией Объединенных Наций по вопросам образования, науки и культуры (ЮНЕСКО) была утверждена Международная биологическая программа под названием «Человек и биосфера». Главной ее задачей было изучение и предупреждение неблагоприятных изменений среды обитания. В последние годы взрослые и детские экологические организации, научные учреждения весьма озабочены сохранением биологического разнообразия.

Как улучшить здоровье окружающей среды?

Мы выяснили, что такое антропогенный фактор в экологии, биологии, географии и других науках. Отметим, что благополучие человеческого общества, жизнь настоящего и будущего поколений людей зависят от качества и степени влияния хозяйственной деятельности на среду обитания. Необходимо снизить экологический риск, связанный с все возрастающей негативной ролью антропогенных факторов.

Как утверждают исследователи, даже недостаточно для обеспечения здоровья среды. Она может быть неблагоприятна для жизни человека при своем прежнем биоразнообразии, но сильном радиационном, химическом и других видах загрязнений.

Очевидна связь между здоровьем и степенью влияния антропогенных факторов. Для снижения их негативного воздействия требуется сформировать новое отношение к окружающей среде, ответственность за благополучное существование живой природы и сохранение биоразнообразия.

Антропогенные факторы – это факторы, порожденные человеком и оказывающие воздействие на окружающую среду.

Вся история научно-технического прогресса, о сути, представляет собой совокупность преобразования человеком в своих целях природных экологических факторов и создания новых, ранее в природе не существовавших.

Выплавка металлов из руд и производство оборудования невозможны без создания высоких температур, давлений, мощных электромагнитных полей. Получение и сохранение высоких урожаев сельскохозяйственных культур требует производства удобрений и средств химической защиты растений от вредителей и возбудителей заболеваний. Современное здравоохранение немыслимо без средств хемо- и физиотерапии. Эти примеры можно умножить.

Достижения научно-технического прогресса стали использоваться в политических и экономических целях, что крайним образом проявилось в создании специальных поражающих человека и его имущество экологических факторов: от огнестрельного оружия до средств массового физического, химического и биологического воздействия.

С другой стороны, кроме таких факторов целенаправленного назначения, в процессе эксплуатации и переработки природных ресурсов неизбежно образуются побочные химические соединения и зоны высоких уровней физических факторов. В ряде случаев эти процессы могут носить скачкообразный характер (в условиях аварий и катастроф) с тяжелыми экологическими и материальными последствиями. Отсюда и потребовалось создавать способы и средства защиты человека от опасных и вредных факторов.

В упрощенной форме ориентировочная классификация антропогенных экологических факторов представлена на рис. 3.

Рис. 3.

Классификация антропогенных экологических факторов

БОВ - боевые отравляющие вещества; СМИ - средства массовой информации.

Антропогенная деятельность существенно влияет на климатические факторы, изменяя их режимы. Так, массовые выбросы в атмосферу твердых и жидких частиц от промышленных предприятий могут резко изменить режим рассеивания солнечного излучения в атмосфере и уменьшить приход теплоты к поверхности Земли. Уничтожение лесов и иной растительности, создание крупных искусственных водохранилищ на бывших территориях суши увеличивает отражение энергии, а загрязнение пылью, например, снега и льда – наоборот, увеличивает поглощение, что приводит к их интенсивному таянию. Таким образом, мезоклимат может резко измениться под воздействием человека: понятно, что климат Северной Африки в отдаленном прошлом, когда она была огромным оазисом, существенно отличался от сегодняшнего климата пустыни Сахара.



Глобальные последствия антропогенной деятельности, чреватые экологическими катастрофами, сводят обычно к двум гипотетическим явлениям: парниковому эффекту и ядерной зиме .

Суть парникового эффекта состоит в следующем. Солнечные лучи проникают сквозь земную атмосферу к поверхности Земли. Однако накопление в атмосфере диоксида углерода, оксидов азота, метана, паров воды, фтор-хлор-углеводородов (фреонов) приводит к тому, что тепловое длинноволновое излучение Земли поглощается атмосферой. Это приводит к накоплению избыточной теплоты в приземном слое воздуха, т. е. нарушается тепловой баланс планеты. Такой эффект подобен тому, который мы наблюдаем в покрытых стеклом или пленкой парниках. В результате температура воздуха у земной поверхности может возрасти.

Сейчас ежегодное возрастание содержания СО 2 оценивается в 1-2 части на миллион. Такая ситуация, как считают, может привести уже в первой половине XXI в. к катастрофическим изменениям климата, в частности к массовому таянию ледников и подъему уровня Мирового океана. Возрастающие темпы сжигания ископаемого топлива приводят, с одной стороны, к устойчивому, хотя и медленному нарастанию содержания СО 2 в атмосфере, а с другой к накоплению (правда, пока локальному и рассеиваемому) атмосферного аэрозоля.

По поводу того, какие последствия будут преобладать в результате этих процессов (потепление или похолодание), среди ученых идут дискуссии. Но независимо от точек зрения, необходимо помнить о том, что жизнедеятельность человеческого общества становится, как об этом говорили В. И. Вернадский, А. Е. Ферсман, мощной геологической и геохимической силой, способной существенно изменить экологическую ситуацию в глобальном масштабе.

Ядерная зима считается возможным следствием ядерных (в том числе и локальных) войн. В результате ядерных взрывов и неизбежных после них пожаров тропосфера окажется насыщенной твердыми частицами пыли, пепла. Земля окажется закрытой (экранированной) от солнечных лучей в течение многих недель и даже месяцев, т. е. наступит так называемая "ядерная ночь". Одновременно в результате образования оксидов азота произойдет разрушение озонового слоя планеты.

Экранирование Земли от солнечного излучения приведет к сильному понижению температуры с неизбежным снижением урожаев, массовой гибелью живых организмов, включал человека, от холода и голода. А те организмы, которые сумеют пережить данную ситуацию до восстановления прозрачности атмосферы, окажутся под воздействием жесткой ультрафиолетовой радиации (из-за разрушения озона) с неизбежным нарастанием частоты раковых и генетических заболеваний.

Процессы, связанные с последствиями ядерной зимы, в настоящее время являются предметом математического и машинного моделирования учеными многих стран. Но человечество располагает и природной моделью подобных явлений, которая заставляет отнестись к ним очень серьезно.

Человек практически не воздействует на литосферу, хотя верхние горизонты земной коры подвергаются сильной трансформации в результате эксплуатации месторождений полезных ископаемых. Существуют проекты (отчасти реализованные) захоронения в недрах жидких и твердых промышленных отходов. Такие захоронения, а также подземные ядерные испытания могут инициировать так называемые "наведенные" землетрясения.

Вполне понятно, что температурная стратификация воды оказывает решающее влияние на размещение в воде живых организмов и на перенос и рассеивание примесей, поступающих от предприятий промышленности, сельского хозяйства, быта.

Воздействие человека на окружающую среду в конечном итоге проявляется в изменении режима множества биотических и абиотических факторов. В числе антропогенных факторов различают факторы, оказывающие прямое влияние на организмы (например, промысел) и факторы, косвенно влияющие на организмы через влияние на местообитание (например, загрязнение среды, уничтожение растительного покрова, строительство плотин). Специфика антропогенных факторов состоит в трудности адаптации к ним живых организмов. Организмы часто не имеют приспособительных реакций к действию антропогенных факторов в связи с тем, что эти факторы не действовали на протяжении эволюционного развития вида, либо из-за того, что действие данных факторов превосходит приспособительные возможности организма.

Антропогенные факторы – это совокупность различных воздействий человека на неживую и живую природу. Действие человека в природе огромно и чрезвычайно многообразно. Воздействие человека может быть прямым и косвенным . Наиболее очевидное проявление антропогенного влияния на биосферу – загрязнение окружающей среды.

Влияние антропогенного фактора в природе может быть как сознательным , так и случайным, или неосознанным .

К сознательным относятся - распашка целинных земель, создание агроценозов (сельскохозяйственных угодий), расселение животных, загрязнение среды.

К случайным относятся воздействия, происходящие в природе под влиянием человеческой деятельности, но не были заранее предусмотрены и запланированы им - распространение различных вредителей, случайный завоз организмов, непредвиденные последствия, вызванные сознательными действиями (осушение болот, постройка плотин и т.д.).

Предложены и другие классификации антропогенных факторов: изменяющиеся закономерно, периодически и изменяющиеся без каких-либо закономерностей.

Существуют и другие подходы к классификации экологических факторов:

    по очередности (первичный и вторичный);

    по времени (эволюционный и исторический);

    по происхождению (космический, абиотический, биогенный, биотический, биологический, природно- антропогенный);

    по среде возникновения (атмосферный, водный, геоморфологический, эдафический, физиологический, генетический, популяционный, биоценотический, экосистемный, биосферный);

    по степени воздействия (летальный - приводящий живой организм к гибели, экстремальный, лимитирующий, беспокоящий, мутагенный, тератогенный – приводящий к уродствам в ходе индивидуального развития).

Популяция Л-3

Термин «популяция» был впервые введен в 1903 г. Йогансеном.

Популяция - это элементарная группировка организмов определенного вида, обладающая всеми необходимыми условиями для поддержания своей численности необозримо длительное время в постоянно изменяющихся условиях среды.

Популяция - это совокупность особей одного вида, которая обладает общим генофондом и занимает определенную территорию.

Вид - это сложная биологическая система, состоящая из группировок организмов- популяций.

Структура популяции характеризуется составляющими ее особями и их распределением в пространстве. Функции популяции – рост, развитие, способность поддерживать существование в постоянно меняющихся условиях.

В зависимости от размеров занимаемой территории выделяют три типа популяций :

    элементарные (микропопуляция) - это совокупность особей вида, занимающих какой-то небольшой участок однородной площади. В состав входят генетически однородные особи;

    экологические - формируется как совокупность элементарных популяций. В основном это внутривидовые группировки, слабо изолированные от других экологических популяций. Выявление свойств отдельных экологических популяций является важной задачей в познании свойств вида в определении его роли в том или ином местообитании;

    географические - охватывают группу особей, населяющих территорию с географически однородными условиями существования. Географические популяции занимают сравнительно большую территорию, довольно разграничены и относительно изолированы. Они отличаются плодовитостью, размерами особей, рядом экологических, физиологических, поведенческих и др. особенностей.

Популяция обладает биологическими особенностями (свойственными всем составляющим ее организмам) и групповыми особенностями (служат уникальными характеристиками группы).

К биологическим особенностям относится наличие жизненного цикла популяции, ее способность к росту, дифференцировке и самоподдержанию.

К групповым особенностям относят рождаемость, смертность, возрастную, половую структуру популяции и генетическую приспособляемость (эта группа признаков относится только к популяции).

Различают следующие типы пространственного распределения особей в популяциях:

1. равномерный (регулярный) - характеризуется равным удалением каждой особи от всех соседних; величина расстояния между особями соответствует порогу, за которым начинается взаимное угнетение,

2. диффузный (случайный) - встречается в природе чаще- особи распределены в пространстве неравномерно, случайно,

    агрегированный (групповой, мозаичный) – выражается в образовании группировок особей, между которыми остаются достаточно большие незаселенные территории.

Популяция является элементарной единицей эволюционного процесса, а вид есть его качественный этап. Важнейшими являются количественные характеристики.

Выделяют две группы количественных показателей :

    статические характеризуют состояние популяции на данном этапе;

    динамические характеризуют процессы, протекающие в популяции за какой-то промежуток (интервал) времени.

К статистическим показателям популяций относятся:

    численность,

    плотность,

    показатели структуры.

Численность популяции - это общее количество особей на данной территории или в данном объеме.

Численность никогда не бывает постоянной и зависит от соотношения интенсивности размножения и смертности. В процессе размножения происходит рост популяции, смертность приводит к сокращению ее численности.

Плотность популяции определяется количеством особей или биомассой на единицу площади либо объема.

Различают :

    среднюю плотность - это численность или биомасса на единицу всего пространства;

    удельная или экологическая плотность - численность или биомасса на единицу обитаемого пространства.

Важнейшим условием существования популяции или ее экотипа является их толерантность к факторам (условиям) среды. Толерантность у разных особей и к разным частям спектра разная, поэтому толерантность популяции значительно шире, чем у отдельных особей.

Динамика популяции – это процессы изменений ее основных биологических показателей во времени.

Основными динамическими показателями (характеристиками) популяций являются:

    рождаемость,

    смертность,

    скорость роста популяции.

Рождаемость - способность популяции к увеличению численности за счет размножения.

Различают следующие виды рождаемости:

    максимальная;

    экологическая.

Максимальная, или абсолютная, физиологическая рождаемость - появление теоретически максимально возможного количества новых особей в индивидуальных условиях, т. е. при отсутствии лимитирующих факторов. Этот показатель - постоянная величина для данной популяции.

Экологическая, или реализуемая, рождаемость обозначает увеличение популяции при фактических, или специфических, условиях среды, Она зависит от состава, размера популяции и фактических условий среды.

Смертность - характеризует гибель особей популяций за определенный период времени.

Различают:

    специфическую смертность - число смертей по отношению к числу особей, составляющих популяцию;

    экологическую или реализуемую, смертность – гибель особей в конкретных условиях среды (величина непостоянная, изменяется в зависимости от состояния природной среды и состояния популяции).

Любая популяция способна к неограниченному росту численности, если ее не лимитируют факторы внешней среды абиотического и биотического происхождения.

Эта динамика описывается уравнением А. Лотки : d N / d t r N

N – численность особей; t - время; r - биотический потенциал



Похожие статьи