Виды протекания эл тока через организм человека. Влияние электрического тока на организм человека

Воздействие электрического тока на человека

Электрический ток оказывает на человека термическое, электролитическое, биологическое и механическое воздействие.

Термическое воздействие тока проявляется ожогами отдель­ных участков тела, нагревом до высокой температуры орга­нов, что вызывает в них значительные функциональные рас­стройства.

Электролитическое воздействие в разложении различных жидкостей организма (воды, крови, лимфы) на ионы, в резуль­тате чего происходит нарушение их физико-химического состава и свойств.

Биологическое действие тока проявляется в виде раздражения и возбуждения живых тканей организма, судорожного сокраще­ния мышц, а также нарушения внутренних биологических про­цессов.

Действие электрического тока на человека приводит к трав­мам или гибели людей.

Электрические травмы разделяются на общие (электрические удары) и местные электротравмы (рис. 2.26).

Наибольшую опасность представляют электрические удары.

Электрический удар - это возбуждение живых тканей про­ходящим через человека электрическим током, сопровождаю­щееся судорожными сокращениями мышц; в зависимости от исхода воздействия тока различают четыре степени электриче­ских ударов:

I- судорожное сокращение мышц без потери сознания;

II-судорожное сокращение мышц с потерей сознания, но с
сохранившимися дыханием и работой сердца;

III - потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

IV - клиническая смерть, т. е. отсутствие дыхания и крово­обращения.


Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок - тяжелая нервно-реф­лекторная реакция организма на сильное раздражение электри­ческим током. Шоковое состояние длится от нескольких десят­ков минут до суток, после чего может наступить гибель или вы­здоровление в результате интенсивных лечебных мероприятий.

Местные электротравмы - это местные нарушения целостно­сти тканей организма. К местным электротравмам относятся:

электрический ожог - бывает токовым и дуговым; токо­вый ожог связан с прохождением тока через тело человека и является следствием преобразования электрической энергии в тепловую (как правило, возникает при относи­тельно невысоких напряжениях электрической сети); при высоких напряжениях электрической сети между провод­ником тока и телом человека может образоваться электри­ческая дуга, возникает более тяжелый ожог - дуговой, т. к. электрическая дуга обладает очень большой темпера­турой - свыше 3500 "С;

электрические знаки - пятна серого или бледно-желтого цвета на поверхности кожи человека, образующиеся в мес­те контакта с проводником тока; как правило, знаки име­ют круглую или овальную форму с размерами 1-5 мм; эта травма не представляет серьезной опасности и достаточно быстро проходит;

металлизация кожи - проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной, с течением времени пораженная кожа сходит; поражение же глаз может закончиться ухудшением или даже потерей зрения;

электроофтальмия - воспаление наружных оболочек глаз под действием потока ультрафиолетовых лучей, испускае­мых электрической дугой; по этой причине нельзя смот­реть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зре­ния, при сильном поражении лечение может быть слож­ным и длительным; на электрическую дугу без специальных защитных очков или масок смотреть нельзя;

механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходяще­го через человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровенос­ных сосудов, а также вывихи суставов, разрывы связок и даже переломы костей; кроме того, при испуге и шоке че­ловек может упасть с высоты и получить травму.

Как видим, электрический ток очень опасен и обращение с ним требует большой осторожности и знания мер обеспечения элетробезопасности.

Параметры, определяющие тяжесть поражения электриче­ским током (рис. 2.27).


Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в про­мышленности и в быту, человек начинает ощущать при силе тока 0,6...1,5 мА (мА - миллиампер равен 0,001 А). Этот ток на­зывают пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА - резкая боль охватывает всю руку и сопровожда­ется судорожными сокращениями мышц кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпус-кающим током.

При токе величиной 25...50 мА происходят нарушения в ра­боте легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца - судорожные неритмичные со­кращения сердца; сердце перестает работать как насос, перека­чивающий кровь. Такой ток называется пороговым фибрилляциейным током. Ток более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Частота тока. Наиболее опасен ток промышленной часто­ты - 50 Гц. Постоянный ток и ток больших частот менее опа­сен, и пороговые значения для него больше. Так, для постоян­ного тока:

Пороговый ощутимый ток - 5...7 мА;

Пороговый неотпускающий ток - 50...80 мА;

Фибрилляционный ток - 300 мА.

Путь протекания тока. Опасность поражения электрическим током зависит от пути протекания тока через тело человека, так как путь определяет долю общего тока, которая проходит через сердце. Наиболее опасен путь «правая рука-ноги» (как раз пра­вой рукой чаще всего работает человек). Затем по степени сни­жения опасности идут: «левая рука-ноги», «рука-рука», «но­ги-ноги». На рис. 2.28 изображены возможные пути протекания тока через человека.

Время воздействия электрического тока. Чем продолжитель­нее протекает ток через человека, тем он опаснее. При протека­нии электрического тока через человека в месте контакта с про­водником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные по­следствия воздействия тока на организм.



Рис. 2.28. Характерные пути тока в теле человека: 1 - рука-рука; 2 - правая рука-ноги; 3 - левая рука-ноги; 4 - правая рука-правая нога; 5 - правая рука-левая нога; 6 - левая рука-левая нога; 7 - левая рука-правая нога; 8 - обе руки-обе ноги; 9 - нога-нога; 10 - голова-руки; 11 - голова-ноги; 12 - голова-правая рука: 13 - голова-левая рука; 14 - голова-правая нога; 15 - голова-левая нога

Определяющую роль в поражающем действии тока играет ве­личина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включен­ным человек. По закону Ома сила электрического тока (I) равна электрическому напряжению U, деленному на сопротивление электрической цепи R:

Таким образом, чем больше напряжение, тем больше и опас­нее электрический ток. Чем больше электрическое сопротивле­ние цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивле­ний всех участков, составляющих цепь (проводников, пола, обу­ви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чис­той и неповрежденной коже может изменяться в довольно ши­роких пределах - от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление челове­ка вносит наружный слой кожи - эпидермис, состоящий из ороговевших клеток. Сопротивление внутренних тканей тела не­большое - всего лишь 300...500 Ом. Поэтому при нежной, влаж­ной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень не­большим. Человек с такой кожей наиболее уязвим для электри­ческого тока. У девушек более нежная кожа и тонкий слой эпи­дермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком сни­жается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния - сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва - 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый - 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный - 30 и 0,3 кОм; земляной - 20 и 0,3 кОм; из керамической плитки - 25 и 0,3 кОм. Как видим, при влаж­ных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, осо­бенно на воде, необходимо соблюдать особую осторожность и при­нимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого коли­чества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах при­меняются напряжения в десятки и сотни тысяч вольт. Такие тех­нические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R.

Предельно допустимые напряжения прикосновения и токи для человека устанавливаются ГОСТ 12.1.038-82 (табл. 2.13) при аварийном режиме работы электроустановок постоянного тока час­тотой 50 и 400 Гц. Для переменного тока частотой 50 Гц допус­тимое значение напряжения прикосновения составляет 2 В, а силы тока - 0,3 мА, для тока частотой 400 Гц соответственно - 2 В и 0,4 мА; для постоянного тока - 8 В и 1 мА. Указанные данные приведены для продолжительности воздействия тока не более 10 мин в сутки.

Таблица 2.13. Предельно допустимые уровни напряжения и токов

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воз­действия тока 4___
0,01...0,08 0,1 0,2 0,3 0,4 0,5 0,6 0,7 0,8 0,9 1,0 Св. 1,0
Переменный, 50 Гц 16 5 36 6
Переменный, 400 Гц 36 8
Постоянный 40 15

В повседневной жизни каждый из нас сталкивается с электричеством. Это могут быть как электроприборы, так и некоторые процедуры. Однако иногда ток может воздействовать на человеческое тело. Стоит разобраться, что такое ток и каково действие электрического тока на организм человека.

Что такое ток?

Современное понятие электрического тока определяет его как направленное движение заряженных частиц. Такими частицами могут быть электроны и ионы, хотя в некоторых случаях ток может возникать под действием изменения магнитного поля во времени.

Ток может быть постоянным и переменным. Постоянный ток имеет неизменные показатели направления и времени, тогда как переменная его форма является нестабильной по данным показателям. Выделяют также форму квазистационарного тока, который является переменным, но его изменения во времени и по направлению настолько малы, что он подчиняется законам постоянного тока.

Все частицы, движущиеся при возникновении тока, имеют свой определенный заряд и направление движения.

Следует определить, какими могут быть виды воздействия электрического тока на организм.

По каноническим законам, движение тока происходит согласно направлению положительных зарядов в среде. В некоторых случаях ток может быть обратно направленным, когда его движение происходит в обратную сторону от направления положительных векторов (может быть обусловлено отрицательными зарядами). Так как же действует ток?

Действие электрического тока на человека и виды поражений

При попадании человеческого организма под действие электрического тока возможно несколько видов их взаимодействия.

Биологическое воздействие тока на организм. Может оказать влияние на работу мышечных волокон и органов, поспособствовать проведению импульса и, наоборот, приостановить его распространение.

Электролитическое действие электрического тока на организм человека предполагает образование некоторых веществ в организме человека и на его поверхности.

Термическое влияние направлено на искажение процессов теплообразования и теплоотдачи.

Формально каждый из данных видов воздействия имеет место при влиянии тока на организм, разница состоит лишь в том, в какой степени проявляется каждый из данных эффектов.

Регулируя силу тока, можно перевести его отрицательное влияние в положительный эффект. Главное - уметь контролировать сам процесс преобразования зарядов. Стоит остановиться поподробнее на каждом из видов воздействия.

Биологический эффект

Биологическое действие электрического тока на организм человека замыкается на некоторых процессах, проходящих в мышцах и нервной системе.

Наибольшую опасность обычно представляет переменный ток. Если схватиться за оголенный провод во время прохождения электрического тока по нему, могут развиться следующие эффекты.

  • Нарушение электропроводимости нервных импульсов. Такой ток влияет на проводящую систему сердца, перевозбуждая все водители ритма. В результате этого имеют место аритмии, фибрилляции.
  • Мышечный спазм. Основан на блокировке током синапсов с преобладанием спастического эффекта. Именно из-за этого невозможно отпустить провод.

Однако если имеется возможность контролировать силу тока, его направление и напряжение, то его можно использовать и в полезных целях. Например, воздействие электрического тока на организм человека фиксированными количествами импульсов определенной силы и напряжения используется в физиотерапии для лечения мышечных спазмов и торакоалгий. Используется подобная методика и при лечении больных с периферическими параличами.

Термическое действие

Локальное влияние электрического тока на организм человека способно оставить электрические ожоги. Такое часто наблюдается при касании к оголенным проводам, при ударе молнии. Не всегда человек умирает непосредственно от самого удара электрическим током, чаще всего к смерти приводят осложнения, вызванные воздействием тока на процессы, проходящие в органах.

Электрические ожоги почти всегда протекают совместно с электролитическими процессами. Часто воздействие электрического тока на организм человека приводит к появлению электрических знаков, меток, металлизации кожи.

Данные последствия не несут сильных повреждений, если длительность удара током была короткой, а его напряжение и сила - слабыми. Гораздо опаснее протекает электрический удар, так как именно он способствует сжиганию внутренних органов. Наблюдается это при длительном прохождении переменного тока через организм человека.

Электролитическое действие

Как было сказано, ток приводит к появлению на коже меток, знаков, металлизации. Что же это за процессы?

Электрические знаки появляются из-за непосредственного локального действия. Представляют собой овальные участки кожи, безболезненные при касании к ним, проходящие самостоятельно через некоторое время.

Металлизация как локальное действие электрического тока на организм человека представляет собой процесс электролиза. Под влиянием электричества происходит отделение ионов металлов (например проводника при контакте с ним) и проникновение их в вышележащие слои кожи. В месте действия тока кожа темнеет, становится плотной и болезненной.

Электроофтальмия. Поражение глаз развивается не за счет непосредственного действия тока, а при воздействии ультрафиолета, отходящего от электрической дуги. Характеризуется воспалением оболочки за счет нарушения ионных процессов в оболочке глаза.

Последствия электрического поражения

Все вышеперечисленные эффекты негативного воздействия тока требуют оказания медицинской помощи. Если действие электрического тока на организм человека было непродолжительным, поражения и нарушения работы внутренних органов не развиваются. Если же действие электрического тока на человека заняло больше времени, обязательно будут иметь место поражения внутренних органов и нарушения функций.

Проявления внутренних нарушений могут давать о себе знать как непосредственно после получения электротравмы, так и в отдаленном периоде. Тяжесть данных осложнений зависит от того, под какой силой тока и каким напряжением они были получены.

Степень действия электрического тока на организм человека определяется также и состоянием внутреннего сопротивления. У каждого человека оно различно: одному даже сильный ток не нанесет никаких повреждений, а другой под действием такого же напряжения может моментально погибнуть. Сопротивление обусловлено состоянием внутренней среды организма и внешними условиями.

Основные мероприятия неотложной помощи

Что же делать, если развилось электрическое поражение, и какие мероприятия должна включать в себя первая помощь?

В первую очередь следует помнить, как действует электрический ток на организм человека. Если по проводнику идет переменный ток, человек не может его отпустить, сам становится его проводником. Поэтому ни в коем случае нельзя пытаться помочь разжать руки попавшему под действие тока человеку. Первым мероприятием должно стать отключение Только после этого нужно начинать основные лечебные мероприятия. Обязательно сразу же вызвать скорую помощь.

Неотложная помощь включает в себя проведение сердечно-легочной реанимации (при отсутствии дыхания или сердцебиения). После прихода человека в сознание рекомендуется уложить его на бок и укрыть одеялом или одеждой с целью профилактики переохлаждения. Остальные мероприятия должна проводить бригада скорой помощи либо непосредственно на месте, либо по дороге в стационар.

Неотложная помощь при нарушениях ритма сердца

Как говорилось выше, наибольшую опасность действие электрического тока на человека представляет для его проводящей системы сердца.

К ней относятся основные структуры, так называемые водители ритма, обеспечивающие сердечные сокращения и прокачку крови к внутренним органам и от них. При сбое в формировании электрических импульсов нарушается координация сердечной деятельности, что чревато последствиями.

К таким последствиям относятся аритмии, фибрилляции и трепетания предсердий и желудочков. Они характеризуются неправильным, учащенным сердечным ритмом, который не способен обогащать органы кровью. Из-за этого нарастают тяжелые последствия в иных органах. Кроме того, это опасно и для самого сердца.

Для того чтобы восстановить правильный сердечный ритм, проводят кардиоверсию. Она может осуществляться как за счет препаратов (антиаритмики), так и при воздействии тока определенной силы и напряжения. Кардиоверсию необходимо начинать сразу же после срыва ритма.

Профилактика электрических поражений

Для того чтобы предотвратить поражающее действие электрического тока на организм человека, следует помнить об элементарных правилах техники безопасности.

Ни в коем случае не стоит прикасаться голыми руками к проводам. Любые манипуляции с ними должны проводиться только при наличии спецодежды (резиновые сапоги, перчатки с изолирующим покрытием и т.д.).

При обнаружении лежащих на земле проводов сразу же следует вызвать электриков. Ни в коем случае не стоит пытаться вернуть их на место своими силами.

Ремонт электроприборов и розеток запрещено проводить своими силами (разрешается только при наличии соответствующего образования и необходимых для этого инструментов).

Если все же случилось так, что вы или ваши близкие были поражены электричеством, ни в коем случае не нужно паниковать, а нужно начинать неотложную помощь. В данной ситуации чем раньше ее начать, тем больше вероятность того, что осложнения не разовьются.

Техника безопасности (ТБ) – система организационных и технических мероприятий и средств, обеспечивающих защиту людей от воздействия опасных и вредных факторов.

Электробезопасность – защита от электрического тока, электрической дуги, статического и атмосферного электричества.

3.1 Воздействие электрического тока на организм человека

Проходя через тело человека, электрический ток оказывает на него биологические (сокращение мышц, паралич дыхания и сердца, раздражение и возбуждение нервных окончаний), электролитические (разложение крови и плазмы), термические (ожоги, нагрев тканей и биологических сред) и механические (разрыв и расслоение тканей) воздействия.

При воздействии электрических тока или дуги могут возникнуть электрические удары – внутренние, общие поражения организма человека, связанные: с едва ощутимым сокращением мышц; судорожными сокращениями мышц, сопровождающимися сильными болями без потери сознания; потерей сознания и нарушением сердечной деятельности и (или) дыхания; потерей сознания, но с сохранившимся дыханием и работой сердца; состоянием клинической смерти в результате фибрилляции сердца или асфиксии. При местном воздействии электрического тока возникают электротравмы : контактные, дуговые или смешанные электроожоги (четыре степени); металлизация кожи частицами расплавившегося металла; электрические знаки (метки различной формы и цвета, безболезненные, исчезающие со временем); электроофтальмия (воспаление наружной оболочки глаз); механические травмы, вызванные непроизвольным сокращением мышц. Тяжесть поражения электрическим током зависит от силы тока, сопротивления тела человека, пути и времени протекания тока через организм, рода (переменный или постоянный) и частоты тока, условий среды и индивидуальных особенностей человека.

Эквивалентную схему при протекании тока через тело человека можно представить в виде последовательно включенных сопротивлений внутренних органов и кожи (эпидермы) в месте контакта (на входе и выходе) с источником тока (рисунок 3.1). Емкость человеческого тела незначительна, и ее не учитывают в практических расчетах. Сопротивление тела человека при различных расчетах, связанных с обеспечением безопасности, принимают активным и равным 1000 Ом , хотя оно и изменяется в широких пределах. Наибольшим сопротивлением обладает наружный слой кожи толщиной порядка 0,2 мм, состоящий из мертвых ороговевших клеток, наименьшим – спинно-мозговая жидкость. Сухая, чистая, неповрежденная кожа имеет сопротивление значительно больше, чем влажная, с большим pH, потная кожа. С увеличением силы тока и временем его протекания сопротивление тела человека уменьшается. Наибольшая опасность возникает при прохождении тока через головной мозг, легкие, сердце . Наиболее опасным является ток промышленных частот (20 – 1000 Гц) . Постоянный ток напряжений 250 – 300 В менее опасен, чем переменный. Некоторые заболевания человека (сердечно сосудистые, кожные) делают его восприимчивым к электрическому току. Поэтому к обслуживанию электроустановок допускаются лица, прошедшие медицинское освидетельствование.

Рисунок 3.1 – Схема замещения тела человека

По степени физиологического воздействия можно выделить следующие токи промышленной частоты воздействием более 1 секунды:

0,5 – 1,5 мА – пороговый ощутимый ток (т.е. наименьшее значение тока, которое человек начинает ощущать);

10 – 20 мА – пороговый не отпускающий ток (когда из-за судорожного сокращения рук человек самостоятельно не может освободится от токоведущих частей);

80 – 100 мА – пороговый фибрилляционный ток (расчетный поражающий ток), вызывающий неритмичные судорожные сокращения сердца, называемые фибрилляцией.

Поражение электрическим током возможно лишь в состоянии полного покоя сердца человека. При продолжительности воздействия не более 10 минут в сутки в неаварийном режиме при нормальных метеорологических условиях предельно допустимые значения тока : частотой 50 Гц равно 0,3 мА, частотой 400 Гц – 0,4 мА, постоянного тока – 1 мА.

Электрический ток в цепи всегда проявляется каким-нибудь своим действием. Это может быть как работа в определенной нагрузке, так и сопутствующее действие тока. Таким образом, по действию тока можно судить о его наличии или отсутствии в данной цепи: если нагрузка работает - ток есть. Если типичное сопутствующее току явление наблюдается - ток в цепи есть, и т. д.

Вообще, электрический ток способен вызывать различные действия: тепловое, химическое, магнитное (электромагнитное), световое или механическое, причем разного рода действия тока зачастую проявляются одновременно. Об этих явлениях и действиях тока и пойдет речь в данной статье.

Тепловое действие электрического тока

При прохождении постоянного или переменного электрического тока по проводнику, проводник нагревается. Такими нагревающимися проводниками в разных условиях и приложениях могут выступать: металлы, электролиты, плазма, расплавы металлов, полупроводники, полуметаллы.


В простейшем случае, если, скажем, через нихромовую проволоку пропустить электрический ток, то она нагреется. Данное явление используется в нагревательных приборах: в электрочайниках, в кипятильниках, в обогревателях, электроплитках и т. д. В электродуговой сварке температура электрической дуги вообще доходит до 7000°С, и металл легко плавится, - это тоже тепловое действие тока.

Выделяемое на участке цепи количество теплоты зависит от приложенного к этому участку напряжения, значения протекающего тока и от времени его протекания ().

Преобразовав закон Ома для участка цепи, можно для вычисления количества теплоты использовать либо напряжение, либо силу тока, но тогда обязательно необходимо знать и сопротивление цепи, ведь именно оно ограничивает ток, и вызывает, по сути, нагрев. Или, зная ток и напряжение в цепи, можно так же легко найти количество выделяемой теплоты.

Химическое действие электрического тока

Электролиты, содержащие ионы, под действием постоянного электрического тока - это и есть химическое действие тока. К положительному электроду (аноду) в процессе электролиза притягиваются отрицательные ионы (анионы), а к отрицательному электроду (катоду) - положительные ионы (катионы). То есть вещества, содержащиеся в электролите, в процессе электролиза выделяются на электродах источника тока.

Например, в раствор определенной кислоты, щелочи или соли погружают пару электродов, и при пропускании электрического тока по цепи на одном электроде создается положительный заряд, на другом - отрицательный. Ионы содержащиеся в растворе начинают откладываться на электроде с противоположным зарядом.

Скажем, при электролизе медного купороса (CuSO4), катионы меди Cu2+ с положительным зарядом движутся к отрицательно заряженному катоду, где они получают недостающий заряд, и становятся нейтральными атомами меди, оседая на поверхности электрода. Гидроксильная группа -OH отдаст электроны на аноде, и в результате выделится кислород. Положительно заряженные катионы водорода H+ и отрицательно заряженные анионы SO42- останутся в растворе.

Химическое действие электрического тока используется в промышленности, например, для разложения воды на составляющие ее части (водород и кислород). Также электролиз позволяет получать некоторые металлы в чистом виде. С помощью электролиза покрывают тонким слоем определенного металла (никеля, хрома) поверхности - это и т.д.

В 1832 году Майкл Фарадей установил, что масса m вещества, выделившегося на электроде, прямо пропорциональна электрическому заряду q, прошедшему через электролит. Если через электролит пропускается в течение времени t постоянный ток I, то справедлив первый закон электролиза Фарадея:

Здесь коэффициент пропорциональности k называется электрохимическим эквивалентом вещества. Он численно равен массе вещества, выделившегося при прохождении через электролит единичного электрического заряда, и зависит от химической природы вещества.

При наличии электрического тока в любом проводнике (в твердом, жидком или газообразном) наблюдается магнитное поле вокруг проводника, то есть проводник с током приобретает магнитные свойства.

Так, если к проводнику, по которому течет ток, поднести магнит, например в виде магнитной стрелки компаса, то стрелка повернется перпендикулярно проводнику, а если намотать проводник на железный сердечник, и пропустить по проводнику постоянный ток, то сердечник станет электромагнитом.

В 1820 году Эрстед открыл магнитное действие тока на магнитную стрелку, а Ампер установил количественные закономерности магнитного взаимодействия проводников с током.


Магнитное поле всегда порождается током, то есть движущимися электрическими зарядами, в частности - заряженными частицами (электронами, ионами). Противоположно направленные токи взаимно отталкиваются, однонаправленные токи взаимно притягиваются.

Такое механическое взаимодействие происходит благодаря взаимодействию магнитных полей токов, то есть это, в первую очередь, - магнитное взаимодействие, а уж потом - механическое. Таким образом, магнитное взаимодействие токов первично.

В 1831 году, Фарадей установил, что изменяющееся магнитное поле от одного контура порождает ток в другом контуре: генерируемая ЭДС пропорциональна скорости изменения магнитного потока. Логично, что именно магнитное действие токов используется по сей день и во всех трансформаторах, а не только в электромагнитах (например, в промышленных).

В простейшем виде световое действие электрического тока можно наблюдать в лампе накаливания, спираль которой разогревается проходящим через нее током до белого каления и излучает свет.

Для лампы накаливания на световую энергию приходится около 5% от подведенной электроэнергии, остальные 95% которой преобразуется в тепло.

Люминесцентные лампы более эффективно преобразуют энергию тока в свет - до 20% электроэнергии преобразуется в видимый свет благодаря люминофору, принимающему от электрического разряда в парах ртути или в инертном газе типа неона.


Более эффективно световое действие электрического тока реализуется в светодиодах. При пропускании электрического тока через p-n переход в прямом направлении, носители заряда - электроны и дырки - рекомбинируют с излучением фотонов (из-за перехода электронов с одного энергетического уровня на другой).

Лучшие излучатели света относятся к прямозонным полупроводникам (то есть к таким, в которых разрешены прямые оптические переходы зона-зона), например GaAs, InP, ZnSe или CdTe. Варьируя состав полупроводников, можно создавать светодиоды для всевозможных длин волн от ультрафиолета (GaN) до среднего инфракрасного диапазона (PbS). КПД светодиода как источника света доходит в среднем до 50%.

Как было отмечено выше, каждый проводник, по которому течет электрический ток, образует вокруг себя . Магнитные действия превращаются в движение, например, в электродвигателях, в магнитных подъемных устройствах, в магнитных вентилях, в реле и т. д.


Механическое действие одного тока на другой описывает закон Ампера. Впервые этот закон был установлен Андре Мари Ампером в 1820 для постоянного тока. Из следует, что параллельные проводники с электрическими токами, текущими в одном направлении, притягиваются, а в противоположных - отталкиваются.

Законом Ампера называется также закон, определяющий силу, с которой магнитное поле действует на малый отрезок проводника с током. Сила, с которой магнитное поле действует на элемент проводника с током, находящегося в магнитном поле, прямо пропорциональна току в проводнике и векторному произведению элемента длины проводника на магнитную индукцию.

На этом принципе основана , где ротор играет роль рамки с током, ориентирующейся во внешнем магнитном поле статора вращающим моментом M.

Поражающее действие электрического тока на организм человека принято называть электротравматизмом. Необходимо принять во внимание, что этому виду производственных травм свойственно большое число исходов с тяжелыми и даже летальными последствиями. Ниже представлен график, демонстрирующий процентное соотношение между ними.

Как показывает статистика, наибольший процент электротравм (от 60 до 70%) приходится на эксплуатацию электрооборудования до 1000 вольт. Такой показатель объясняется как распространенностью установок данного класса, так и слабой подготовкой рабочего персонала.

В большинстве случаев получение электротравм связано с нарушением норм безопасности и незнанием элементарных законов электротехники. Например, электробезопасность не допускает использовать пенные огнетушители как первичные средства пожаротушения электрооборудования.

Охрана труда требует, чтобы все, кто работает с электрооборудованием, в обязательном порядке проходили инструктаж электробезопасности. Где рассказывается об опасности электротока, какие меры необходимо предпринимать при электротравмах, а также способы оказания необходимой в этих случаях помощи.

Заметим, что количество электротравм значительно ниже среди лиц, обслуживающих электрооборудование с напряжением свыше 1000В, это указывает на хорошую подготовку таких специалистов.

Факторы, влияющие на исход поражения электрическим током

Есть несколько доминирующих причин, от которых зависит характер повреждений при электротавме:


Виды воздействия

Электроток силой от 0,5 до 1,5 мА считается минимальным для восприятия человеком, когда происходит превышение этого порогового значения, начинает появляться ощущение дискомфорта, которое выражается в непроизвольном сокращении мышечной ткани.

При 15 мА и более полностью теряется контроль над мышечной системой. В этом состоянии без посторонней помощи оторваться от электрического источника не представляется возможным, поэтому данную пороговую величину силы электротока называют неотпускаемой.

При силе электротока, переходящей рубеж 25 мА, происходит паралич мышц, отвечающих за работу дыхательной системы, что грозит удушьем. Если этот порог существенно превышается, наступает фибрилляция (сбой сердечного ритма).

Видео: действие электрического тока на организм человека

Ниже приведена таблица, где указана допустимая величина напряжения, тока и времени их воздействия.


Электротравмы могут произвести следующие виды воздействий:

  • тепловое, появляются ожоги различной степени, которые могут нарушить работу как кровеносных сосудов, так и внутренних органов. Обратим внимание, что термическое проявление действия электротока наблюдается при большинстве электротравм;
  • воздействие электролитического характера становится причиной изменения физического и химического состава тканей, вследствие расщепления крови и прочих жидкостей организма;
  • физиологическое, приводит к судорожным сокращениям мышечных тканей. Заметим, что биологическое действие электротока также нарушает работу и других важных органов, например, сердца и легких.

Виды электротравм

Воздействие электротока вызывает следующие характерные повреждения:

  • электроожоги, могут возникнуть вследствие прохождения электротока или быть вызваны электрической дугой. Заметим, что такие электротравмы встречаются чаще всего (около 60%);
  • появление на коже овальных пятен серого или желтого цвета в местах прохождения электротока. Омертвевший слой кожного покрова огрубевает, через какое-то время такое образование, называемое электрическим знаком, самостоятельно сходит;
  • проникновение мелких частиц металла (оплавившегося от КЗ или электродуги) в кожный покров. Такой вид травмы называют металлизацией кожи. Для пораженных участков характерен темно-металлический оттенок, прикосновение к нему вызывает болезненные ощущения;
  • световое действие, становится причиной электроофтальмии (воспалительного процесса глазной оболочки) из-за ультрафиолетового излучения, характерного для элетродуги. Для защиты достаточно использовать специальные очки или маску;
  • механическое воздействие (электрический удар) происходит вследствие непроизвольного сокращения мышечной ткани, в результате этого может случиться разрыв кожного покрова или других органов.

Заметим, что из всех описанных выше электротравм наибольшую опасность представляют последствия электрического удара, их разделяют по степени воздействия:

  1. вызывают сокращения мышечной ткани, при этом пострадавший не теряет сознания;
  2. судорожные сокращения мышечных тканей, сопровождается потерей сознания, кровеносная и дыхательная системы продолжают функционировать;
  3. происходит паралич дыхательной системы и нарушение сердечного ритма;
  4. наступление клинической смерти (дыхание отсутствует, сердце останавливается).

Шаговое напряжение

Учитывая нередкие случаи поражения от шагового напряжения, имеет смысл рассказать подробнее о механизме его воздействия. Обрыв линии электропередач, или нарушение целостности изоляции в проложенном под землей кабеле приводят к образованию вокруг проводника опасной зоны, в которой происходит «растекание» тока.

При попадании в эту зону можно подвергнуться воздействию напряжения шага, его величина зависит от разности потенциалов между местами, где человек касается земли. На рисунке наглядно продемонстрировано как это происходит.


На рисунке отмечено:

  • 1 – электропроводка;
  • 2 – место падения оборвавшегося провода;
  • 3 – человек, попавший в зону растекания электротока;
  • U 1 и U 2 – потенциалы в точках, где ноги соприкасаются с землей.

Напряжение шага (V ш)определяется следующим выражением: U 1 -U 2 (В).

Как видно из формулы, чем больше будет расстояние между ступнями, тем значительней разность потенциалов и выше V ш. То есть, при попадании на участок, где происходит «растекание» электротока, для выхода из него нельзя делать большие шаги.

Как необходимо действовать, оказывая помощь при электротравмах

Первая помощь при поражении электрическим током заключается в определенной последовательности действий:




Похожие статьи