Какие главные особенности у черной дыры. Черные дыры в космосе: интересные факты и фото

С. ТРАНКОВСКИЙ

Среди наиболее важных и интересных проблем современной физики и астрофизики академик В. Л. Гинзбург назвал вопросы, связанные с черными дырами (см. "Наука и жизнь" №№ 11, 12, 1999 г.). Существование этих странных объектов было предсказано более двухсот лет назад, условия, приводящие к их образованию, точно рассчитали в конце 30-х годов XX века, а вплотную астрофизика занялась ими менее сорока лет назад. Сегодня научные журналы мира ежегодно публикуют тысячи статей, посвященных черным дырам.

Образование черной дыры может происходить тремя путями.

Так принято изображать процессы, идущие в окрестностях коллапсирующей черной дыры. С течением времени (Y) пространство (X) вокруг нее (закрашенная область) сжимается, устремляясь к сингулярности.

Гравитационное поле черной дыры вносит сильнейшие искажения в геометрию пространства.

Черная дыра, невидимая в телескоп, обнаруживает себя только по своему гравитационному воздействию.

В мощном поле тяготения черной дыры происходит рождение пар частица-античастица.

Рождение пары частица-античастица в лаборатории.

КАК ОНИ ВОЗНИКАЮТ

Светящееся небесное тело, обладающее плотностью, равной плотности Земли, и диаметром, в двести пятьдесят раз превосходящим диаметр Солнца, из-за силы своего притяжения не даст своему свету достигнуть нас. Таким образом, возможно, что самые большие светящиеся тела во Вселенной именно по причине своей величины остаются невидимыми.
Пьер Симон Лаплас.
Изложение системы мира. 1796 год.

В 1783 году английский математик Джон Митчел, а спустя тринадцать лет независимо от него французский астроном и математик Пьер Симон Лаплас провели очень странное исследование. Они рассмотрели условия, при которых свет не сможет покинуть звезду.

Логика ученых была проста. Для любого астрономического объекта (планеты или звезды) можно вычислить так называемую скорость убегания, или вторую космическую скорость, позволяющую любому телу или частице навсегда его покинуть. А в физике того времени безраздельно господствовала ньютоновская теория, согласно которой свет - это поток частиц (до теории электромагнитных волн и квантов оставалось еще почти полтораста лет). Скорость убегания частиц можно рассчитать исходя из равенства потенциальной энергии на поверхности планеты и кинетической энергии тела, "убежавшего" на бескончно большое расстояние. Эта скорость определяется формулой #1#

где M - масса космического объекта, R - его радиус, G - гравитационная постоянная.

Отсюда легко получается радиус тела заданной массы (позднее получивший название "гравитационный радиус r g "), при котором скорость убегания равна скорости света:

Это значит, что звезда, сжатая в сферу радиусом r g < 2GM /c 2 , перестанет излучать - свет покинуть ее не сможет. Во Вселенной возникнет черная дыра.

Несложно рассчитать, что Солнце (его масса 2 . 10 33 г) превратится в черную дыру, если сожмется до радиуса примерно 3 километра. Плотность его вещества при этом достигнет 10 16 г/см 3 . Радиус Земли, сжатой до состояния черной дыры, уменьшился бы примерно до одного сантиметра.

Казалось невероятным, что в природе могут найтись силы, способные сжать звезду до столь ничтожных размеров. Поэтому выводы из работ Митчела и Лапласа более ста лет считались чем-то вроде математического парадокса, не имеющего физического смысла.

Строгое математическое доказательство того, что подобный экзотический объект в космосе возможен, было получено только в 1916 году. Немецкий астроном Карл Шварц-шильд, проведя анализ уравнений общей теории относительности Альберта Эйнштейна, получил интересный результат. Исследовав движение частицы в гравитационном поле массивного тела, он пришел к выводу: уравнение теряет физический смысл (его решение обращается в бесконечность) при r = 0 и r = r g .

Точки, в которых характеристики поля теряют смысл, называются сингулярными, то есть особыми. Сингулярность в нулевой точке отражает точечную, или, что то же самое, центрально-симметричную структуру поля (ведь любое сферическое тело - звезду или планету - можно представить как материальную точку). А точки, расположенные на сферической поверхности радиусом r g , образуют ту самую поверхность, с которой скорость убегания равна скорости света. В общей теории относительности она именуется сингулярной сферой Шварц-шильда или горизонтом событий (почему - станет ясно в дальнейшем).

Уже на примере знакомых нам объектов - Земли и Солнца - ясно, что черные дыры представляют собой весьма странные объекты. Даже астрономы, имеющие дело с веществом при экстремальных значениях температуры, плотности и давления, считают их весьма экзотическими, и до последнего времени далеко не все верили в их существование. Однако первые указания на возможность образования черных дыр содержались уже в общей теории относительнос-ти А. Эйнштейна, созданной в 1915 году. Английский астроном Артур Эддингтон, один из первых интерпретаторов и популяризаторов теории относительности, в 30-х годах вывел систему уравнений, описывающих внутреннее строение звезд. Из них следует, что звезда находится в равновесии под действием противополож но направленных сил тяготения и внутреннего давления, создаваемого движением частиц горячей плазмы внутри светила и напором излучения, образующегося в его недрах. А это означает, что звезда представляет собой газовый шар, в центре которого высокая температура, постепенно понижающаяся к периферии. Из уравнений, в частности, следовало, что температура поверхности Солнца составляет около 5500 градусов (что вполне соответствовало данным астрономических измерений), а в его центре должна быть порядка 10 миллионов градусов. Это позволило Эддингтону сделать пророческий вывод: при такой температуре "зажигается" термоядерная реакция, достаточная для обеспечения свечения Солнца. Физики-атомщики того времени с этим не соглашались. Им казалось, что в недрах звезды слишком "холодно": температура там недостаточна, чтобы реакция "пошла". На это взбешенный теоретик отвечал: "Поищите местечко погорячее!".

И в конечном итоге он оказался прав: в центре звезды действительно идет термоядер ная реакция (другое дело, что так называемая "стандартная солнечная модель", основанная на представлениях о термоядерном синтезе, по-видимому, оказалась неверной - см., например, "Наука и жизнь" №№ 2, 3, 2000 г.). Но тем не менее реакция в центре звезды проходит, звезда светит, а излучение, которое при этом возникает, удерживает ее в стабильном состоянии. Но вот ядерное "горючее" в звезде выгорает. Выделение энергии прекращается, излучение гаснет, и сила, сдерживающая гравитационное притяжение, исчезает. Существует ограничение на массу звезды, после которого звезда начинает необратимо сжиматься. Расчеты показывают, что это происходит, если масса звезды превышает две-три массы Солнца.

ГРАВИТАЦИОННЫЙ КОЛЛАПС

Вначале скорость сжатия звезды невелика, но его темп непрерывно возрастает, поскольку сила притяжения обратно пропорциональна квадрату расстояния. Сжатие становится необратимым, сил, способных противодействовать самогравитации, нет. Такой процесс называется гравитационным коллапсом. Скорость движения оболочки звезды к ее центру увеличивается, приближаясь к скорости света. И здесь начинают играть роль эффекты теории относительности.

Скорость убегания была рассчитана исходя из ньютоновсих представлений о природе света. С точки зрения общей теории относительности явления в окрестностях коллапсирующей звезды происходят несколько по-другому. В ее мощном поле тяготения возникает так называемое гравитационное красное смещение. Это означает, что частота излучения, исходящего от массивного объекта, смещается в сторону низких частот. В пределе, на границе сферы Шварцшильда, частота излучения становится равной нулю. То есть наблюдатель, находящийся за ее пределами, ничего не сможет узнать о том, что происходит внутри. Именно поэтому сферу Шварцшильда и называют горизонтом событий.

Но уменьшение частоты равнозначно замедлению времени, и, когда частота становится равна нулю, время останавливается. Это означает, что посторонний наблюдатель увидит очень странную картину: оболочка звезды, падающая с нарастающим ускорением, вместо того, чтобы достигнуть скорости света, останавливается. С его точки зрения, сжатие прекратится, как только размеры звезды приблизятся к гравитационному ради
усу. Он никогда не увидит, чтобы хоть одна частица "нырнула" под сферу Шварцшиль да. Но для гипотетического наблюдателя, падающего на черную дыру, все закончится в считанные мгновения по его часам. Так, время гравитационного коллапса звезды размером с Солнце составит 29 минут, а гораздо более плотной и компактной нейтронной звезды - только 1/20 000 секунды. И здесь его подстерегает неприятность, связанная с геометрией пространства-времени вблизи черной дыры.

Наблюдатель попадает в искривленное пространство. Вблизи гравитационного радиуса силы тяготения становятся бесконечно большими; они растягивают ракету с космонавтом-наблюдателем в бесконечно тонкую нить бесконечной длины. Но сам он этого не заметит: все его деформации будут соответствовать искажениям пространственно-временн ых координат. Эти рассуждения, конечно, относятся к идеальному, гипотетическому случаю. Любое реальное тело будет разорвано приливными силами задолго до подхода к сфере Шварцшильда.

РАЗМЕРЫ ЧЕРНЫХ ДЫР

Размер черной дыры, а точнее - радиус сферы Шварцшильда пропорционален массе звезды. А поскольку астрофизика никаких ограничений на размер звезды не накладывает, то и черная дыра может быть сколь угодно велика. Если она, например, возникла при коллапсе звезды массой 10 8 масс Солнца (или за счет слияния сотен тысяч, а то и миллионов сравнительно небольших звезд), ее радиус будет около 300 миллионов километров, вдвое больше земной орбиты. А средняя плотность вещества такого гиганта близка к плотности воды.

По-видимому, именно такие черные дыры находятся в центрах галактик. Во всяком случае, астрономы сегодня насчитывают около пятидесяти галактик, в центре которых, судя по косвенным признакам (речь о них пойдет ниже), имеются черные дыры массой порядка миллиарда (10 9) солнечной. В нашей Галактике тоже, видимо, есть своя черная дыра; ее массу удалось оценить довольно точно - 2,4 . 10 6 ±10% массы Солнца.

Теория предполагает, что наряду с такими сверхгигантами должны были возникать и черные мини-дыры массой порядка 10 14 г и радиусом порядка 10 -12 см (размер атомного ядра). Они могли появляться в первые мгновения существования Вселенной как проявление очень сильной неоднородности пространства-времени при колоссальной плотности энергии. Условия, которые были тогда во Вселенной, исследователи сегодня реализуют на мощных коллайдерах (ускорителях на встречных пучках). Эксперименты в ЦЕРНе, проведенные в начале этого года, позволили получить кварк-глюонную плазму - материю, существовавшую до возникновения элементарных частиц. Исследования этого состояния вещества продолжаются в Брукхевене - американском ускорительном центре. Он способен разогнать частицы до энергий, на полтора-два порядка более высоких, чем ускоритель в
ЦЕРНе. Готовящийся эксперимент вызвал нешуточную тревогу: не возникнет ли при его проведении черная мини-дыра, которая искривит наше пространство и погубит Землю?

Это опасение вызвало столь сильный резонанс, что правительство США было вынуждено созвать авторитетную комиссию для проверки такой возможности. Комиссия, состоявшая из видных исследователей, дала заключение: энергия ускорителя слишком мала, чтобы черная дыра могла возникнуть (об этом эксперименте рассказано в журнале "Наука и жизнь" № 3, 2000 г.).

КАК УВИДЕТЬ НЕВИДИМОЕ

Черные дыры ничего не излучают, даже свет. Однако астрономы научились видеть их, вернее - находить "кандидатов" на эту роль. Есть три способа обнаружить черную дыру.

1. Нужно проследить за обращением звезд в скоплениях вокруг некоего центра гравитации. Если окажется, что в этом центре ничего нет, и звезды крутятся как бы вокруг пустого места, можно достаточно уверенно сказать: в этой "пустоте" находится черная дыра. Именно по этому признаку предположили наличие черной дыры в центре нашей Галактики и оценили ее массу.

2. Черная дыра активно всасывает в себя материю из окружающего пространства. Межзвездная пыль, газ, вещество ближайших звезд падают на нее по спирали, образуя так называемый аккреционный диск, подобный кольцу Сатурна. (Именно это и пугало в брукхевенском эксперименте: черная мини-дыра, возникшая в ускорителе, начнет всасывать в себя Землю, причем процесс этот никакими силами остановить было бы нельзя.) Приближаясь к сфере Шварцшильда, частицы испытывают ускорение и начинают излучать в рентгеновском диапазоне. Это излучение имеет характерный спектр, подобный хорошо изученному излучению частиц, ускоренных в синхротроне. И если из какой-то области Вселенной приходит такое излучение, можно с уверенностью сказать - там должна быть черная дыра.

3. При слиянии двух черных дыр возникает гравитационное излучение. Подсчитано, что если масса каждой составляет около десяти масс Солнца, то при их слиянии за считанные часы в виде гравитационных волн выделится энергия, эквивалентная 1% их суммарной массы. Это в тысячу раз больше той световой, тепловой и прочей энергии, которую излучило Солнце за все время своего существования - пять миллиардов лет. Обнаружить гравитаци онное излучение надеются с помощью гравитационно-волновых обсерваторий LIGO и других, которые строятся сейчас в Америке и Европе при участии российских исследователей (см. "Наука и жизнь" № 5, 2000 г.).

И все-таки, хотя у астрономов нет никаких сомнений в существовании черных дыр, категорически утверждать, что в данной точке пространства находится именно одна из них, никто не берется. Научная этика, добросовестность исследователя требуют получить на поставленный вопрос ответ однозначный, не терпящий разночтений. Мало оценить массу невидимого объекта, нужно измерить его радиус и показать, что он не превышает шварцшильдовский. А даже в пределах нашей Галактики эта задача пока не разрешима. Именно поэтому ученые проявляют известную сдержанность в сообщениях об их обнаружении, а научные журналы буквально набиты сообщениями о тео-ретических работах и наблюдениях эффектов, способных пролить свет на их загадку.

Есть, правда, у черных дыр и еще одно свойство, предсказанное теоретически, которое, возможно, позволило бы увидеть их. Но, правда, при одном условии: масса черной дыры должна быть гораздо меньше массы Солнца.

ЧЕРНАЯ ДЫРА МОЖЕТ БЫТЬ И "БЕЛОЙ"

Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.

Согласно представлениям квантовой механики, вакуум - не пустота, а некая "пена пространства-времени", мешанина из виртуалных (ненаблюдаемых в нашем мире) частиц. Однако квантовые флуктуации энергии способны "выбросить" из вакуума пару частица-античастица. Например, при столкновении двух-трех гамма-квантов как бы из ничего возникнут электрон и позитрон. Это и аналогичные явления неоднократно наблюдались в лабораториях.

Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E , уменьшит свою энергию, а с энергией E - увеличит.

Хокинг подсчитал скорости, с которыми идут все эти процессы, и пршел к выводу: вероятность поглощения частиц с отрицательной энергией выше. Это значит, что черная дыра теряет энергию и массу - испаряется. Кроме того она излучает как абсолютно черное тело с температурой T = 6 . 10 -8 M с /M кельвинов, где M с - масса Солнца (2 . 10 33 г), M - масса черной дыры. Эта несложная зависимость показывает, что температура черной дыры с массой, в шесть раз превышающей солнечную, равна одной стомиллионной доле градуса. Ясно, что столь холодное тело практически ничего не излучает, и все приведенные выше рассуждения остаются в силе. Иное дело - мини-дыры. Легко увидеть, что при массе 10 14 -10 30 граммов они оказываются нагретыми до десятков тысяч градусов и раскалены добела! Следует, однако, сразу отметить, что противоречий со свойствами черных дыр здесь нет: это излучение испускается слоем над сферой Шварцшильда, а не под ней.

Итак, черная дыра, которая казалась навеки застывшим объектом, рано или поздно исчезает, испарившись. Причем по мере того, как она "худеет", темп испарения нарастает, но все равно идет чрезвычайно долго. Подсчитано, что мини-дыры массой 10 14 граммов, возникшие сразу после Большого взрыва 10-15 миллиардов лет назад, к нашему времени должны испариться полностью. На последнем этапе жизни их температура достигает колоссальной величины, поэтому продуктами испарения должны быть частицы чрезвычайно высокой энергии. Возможно, именно они порождают в атмосфере Земли широкие амосферные ливни - ШАЛы. Во всяком случае, происхождение частиц аномально высокой энергии - еще одна важная и интересная проблема, которая может быть вплотную связана с не менее захватывающими вопросами физики черных дыр.

Такое название она получила из-за того, что поглощает свет, но не отражает его как другие объекты. На самом деле фактов про черные дыры существует множество, и о некоторых самых интересных мы сегодня расскажем. До относительно недавнего времени считалось, что черная дыра в космосе всасывает в себя все, что рядом с ней находится или пролетает: планеты мусор, но, недавно ученые стали утверждать - содержимое через некоторое время «выплевывается» обратно, только совершенно в другом виде. Если вас интересуют черные дыры в космосе интересные факты о них мы сегодня расскажем подробнее.

Существует ли угроза для Земли?

Есть две черные дыры, которые могут представлять реальную угрозу нашей планете, но находятся они, к счастью, для нас далеко на расстоянии примерно 1600 световых лет. Ученые смогли обнаружить эти объекты только потому, что находились они вблизи Солнечной Системы и специальные приборы, улавливающие рентгеновские лучи, смогли их увидеть. Есть предположение, что огромная сила гравитации способна повлиять на черные дыры таким образом, что они сольются в одну.

Вряд ли кто-то из современников сможет застать тот момент, когда эти таинственные объекты исчезнут. Настолько медленно происходит процесс гибели дыр.

Черная дыра - это звезда в прошлом

Как образуются черные дыры в космосе ? Звезды имеют внушительный запас термоядерного топлива, из-за чего они и светятся так ярко. Но все ресурсы заканчиваются, и звезда охлаждается, постепенно теряя свое свечение и превращаясь в черного карлика. Известно, что в остывшей звезде происходит процесс сжатия, в итоге она взрывается, а ее частицы разлетаются на огромные расстояния в космосе, притягивая соседние объекты, тем самым увеличивая размер черной дыры.

Самое интересное про черные дыры в космосе нам еще предстоит изучить, но удивительно, плотность ее, несмотря на внушительные размеры, может равняться плотности воздуха. Это говорит о том, что даже самые крупные объекты космоса могут иметь такой же вес, как воздух, то есть быть невероятно легкими. Вот как появляются черные дыры в космосе .

Время в самой черной дыре и возле течет очень медленно, поэтому объекты, пролетающие рядом замедляют свое движение. Причиной всему огромная сила гравитации, еще более удивительный факт, все процессы, происходящие в самой дыре, имеют невероятную скорость. Допустим, если наблюдать за тем как выглядит черная дыра в космосе , находясь за границами всепоглощающей массы, кажется, что все стоит на месте. Однако стоит только попасть внутрь объекту, его в мгновение бы разорвало. Сегодня нам показывают, как выглядит черная дыра в космосе фото , смоделированное специальными программами.

Определение черной дыры?

Теперь мы знаем откуда берутся черные дыры в космосе . Но что в них еще особенного? Сказать, что черная дыра - это планета или звезда невозможно априори, потому что это тело не газовое и не твердое. Это объект, который способен искажать не только ширину, длину и высоту, но и временную шкалу. Что совершенно не поддается физическим законам. Ученые утверждают, что время в районе горизонта пространственной единицы может двигаться вперед и назад. Что находится в черной дыре в космосе невозможно себе представить, световые кванты, попадающие туда, умножаются в несколько раз на массу сингулярности, этот процесс увеличивает мощь гравитационной силы. Поэтому, если взять с собой фонарик и отправиться черную дыру, светиться он не будет. Сингулярность - точка, в которой все стремится к бесконечности.

Структура черной дыры - это сингулярность и горизонт событий. Внутри сингулярности физические теории полностью теряют свой смысл, поэтому до сих пор она остается загадкой для ученых. Пересекая границу (горизонт событий), физический объект теряет возможность вернуться. Мы знаем далеко не все о черных дырах в космосе , но интерес к ним не угасает.

Правообладатель иллюстрации Thinkstock

Возможно, вы думаете, что человека, попавшего в черную дыру, ждет мгновенная смерть. В действительности же его судьба может оказаться намного более удивительной, рассказывает корреспондент .

Что произойдет с вами, если вы попадете внутрь черной дыры? Может быть, вы думаете, что вас раздавит - или, наоборот, разорвет на клочки? Но в действительности все гораздо страннее.

В тот момент, когда вы попадете в черную дыру, реальность разделится надвое. В одной реальности вас мгновенно испепелит, в другой же - вы нырнете вглубь черной дыры живым и невредимым.

Внутри черной дыры не действуют привычные нам законы физики. Согласно Альберту Эйнштейну, гравитация искривляет пространство. Таким образом, при наличии объекта достаточной плотности пространственно-временной континуум вокруг него может деформироваться настолько, что в самой реальности образуется прореха.

Массивная звезда, израсходовавшая все топливо, может превратиться именно в тот тип сверхплотной материи, который необходим для возникновения подобного искривленного участка Вселенной. Звезда, схлопывающаяся под собственной тяжестью, увлекает за собой пространственно-временной континуум вокруг нее. Гравитационное поле становится настолько сильным, что даже свет больше не может из него вырваться. В результате область, в которой ранее находилась звезда, становится абсолютно черной - это и есть черная дыра.

Правообладатель иллюстрации Thinkstock Image caption Никто точно не знает, что происходит внутри черной дыры

Внешняя поверхность черной дыры называется горизонтом событий. Это сферическая граница, на которой достигается баланс между силой гравитационного поля и усилиями света, пытающегося покинуть черную дыру. Если пересечь горизонт событий, вырваться будет уже невозможно.

Горизонт событий лучится энергией. Благодаря квантовым эффектам, на нем возникают потоки горячих частиц, излучаемых во Вселенную. Это явление называется излучением Хокинга - в честь описавшего его британского физика-теоретика Стивена Хокинга. Несмотря на то, что материя не может вырваться за пределы горизонта событий, черная дыра, тем не менее, "испаряется" - со временем она окончательно потеряет свою массу и исчезнет.

По мере продвижения вглубь черной дыры пространство-время продолжает искривляться и в центре становится бесконечно искривленным. Эта точка известна как гравитационная сингулярность. Пространство и время в ней перестают иметь какое-либо значение, а все известные нам законы физики, для описания которых необходимы эти два понятия, больше не действуют.

Никто не знает, что именно ждет человека, попавшего в центр черной дыры. Иная вселенная? Забвение? Задняя стенка книжного шкафа, как в американском научно-фантастическом фильме "Интерстеллар"? Это загадка.

Давайте порассуждаем - на вашем примере - о том, что произойдет, если случайно попасть в черную дыру. Компанию в этом эксперименте вам составит внешний наблюдатель - назовем его Анной. Итак, Анна, находящаяся на безопасном расстоянии, в ужасе наблюдает за тем, как вы приближаетесь к границе черной дыры. С ее точки зрения события будут развиваться весьма странным образом.

По мере вашего приближения к горизонту событий Анна будет видеть, как вы вытягиваетесь в длину и сужаетесь в ширину, будто она рассматривает вас в гигантскую лупу. Кроме того, чем ближе вы будете подлетать к горизонту событий, тем больше Анне будет казаться, что ваша скорость падает.

Правообладатель иллюстрации Thinkstock Image caption В центре черной дыры пространство бесконечно искривлено

Вы не сможете докричаться до Анны (поскольку в безвоздушном пространстве звук не передается), но можете попытаться подать ей знак азбукой Морзе при помощи фонарика в вашем iPhone. Однако ваши сигналы будут достигать ее со все возрастающими интервалами, а частота света, испускаемого фонариком, будет смещаться в сторону красного (длинноволнового) участка спектра. Вот как это будет выглядеть: "Порядок, п о р я д о к, п о р я…".

Когда вы достигнете горизонта событий, то, с точки зрения Анны, замрете на месте, как если бы кто-то поставил воспроизведение на паузу. Вы останетесь в неподвижности, растянутым по поверхности горизонта событий, и вас начнет охватывать все возрастающий жар.

С точки зрения Анны, вас будут медленно убивать растяжение пространства, остановка времени и жар излучения Хокинга. Прежде чем вы пересечете горизонт событий и углубитесь в недра черной дыры, от вас останется один пепел.

Но не спешите заказывать панихиду - давайте на время забудем об Анне и посмотрим на эту ужасную сцену с вашей точки зрения. А с вашей точки зрения будет происходить нечто еще более странное, то есть ровным счетом ничего особенного.

Вы летите прямиком в одну из самых зловещих точек Вселенной, не испытывая при этом ни малейшей тряски - не говоря уже о растяжении пространства, замедлении времени или жаре излучения. Все потому, что вы находитесь в состоянии свободного падения и поэтому не чувствуете своего веса - именно это Эйнштейн назвал "самой удачной идеей" своей жизни.

Действительно, горизонт событий - это не кирпичная стена в космосе, а явление, обусловленное точкой зрения наблюдающего. Наблюдатель, остающийся снаружи черной дыры, не может заглянуть внутрь сквозь горизонт событий, но это его проблема, а не ваша. С вашей точки зрения никакого горизонта не существует.

Если бы размеры нашей черной дыры были меньше, вы и правда столкнулись бы с проблемой - гравитация действовала бы на ваше тело неравномерно, и вас вытянуло бы в макаронину. Но, по счастью для вас, данная черная дыра велика - она в миллионы раз массивнее Солнца, так что гравитационная сила достаточно слаба, чтобы можно было ею пренебречь.

Правообладатель иллюстрации Thinkstock Image caption Вы не можете вернуться и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое

Внутри достаточно крупной черной дыры вы даже сможете вполне нормально прожить остаток жизни, пока не умрете в гравитационной сингулярности.

Вы можете спросить, насколько нормальной может быть жизнь человека, помимо воли увлекаемого к дыре в пространственно-временном континууме без шанса на то, чтобы когда-нибудь выбраться наружу?

Но если вдуматься, нам всем знакомо это ощущение - только применительно ко времени, а не к пространству. Время идет только вперед и никогда вспять, и оно действительно влечет нас за собою помимо нашей воли, не оставляя нам шанса на возвращение в прошлое.

Это не просто аналогия. Черные дыры искривляют пространственно-временной континуум до такой степени, что внутри горизонта событий время и пространство меняются местами. В каком-то смысле вас влечет к сингулярности не пространство, а время. Вы не можете вернуться назад и выбраться из черной дыры - точно так же, как никто из нас не способен на путешествие в прошлое.

Возможно, теперь вы задаетесь вопросом, что же не так с Анной. Вы летите себе в пустом пространстве черной дыры и с вами все в порядке, а она оплакивает вашу гибель, утверждая, что вас испепелило излучение Хокинга с внешней стороны горизонта событий. Уж не галлюцинирует ли она?

В действительности утверждение Анны совершенно справедливо. С ее точки зрения, вас действительно поджарило на горизонте событий. И это не иллюзия. Анна может даже собрать ваш пепел и отослать его вашим родным.

Правообладатель иллюстрации Thinkstock Image caption Горизонт событий - не кирпичная стена, он проницаем

Дело в том, что, в соответствии с законами квантовой физики, с точки зрения Анны вы не можете пересечь горизонт событий и должны остаться с внешней стороны черной дыры, поскольку информация никогда не теряется безвозвратно. Каждый бит информации, отвечающий за ваше существование, обязан оставаться на внешней поверхности горизонта событий - иначе с точки зрения Анны, будут нарушены законы физики.

С другой стороны, законы физики также требуют, чтобы вы пролетели сквозь горизонт событий живыми и невредимыми, не повстречав на своем пути ни горячих частиц, ни каких-либо иных необычных явлений. В противном случае будет нарушена общая теория относительности.

Итак, законы физики хотят, чтобы вы одновременно находились снаружи черной дыры (в виде горстки пепла) и внутри нее (в целости и сохранности). И еще один немаловажный момент: согласно общим принципам квантовой механики, информацию нельзя клонировать. Вам нужно находиться в двух местах одновременно, но при этом лишь в одном экземпляре.

Такое парадоксальное явление физики называют термином "исчезновение информации в черной дыре". По счастью, в 1990-х гг. ученым удалось этот парадокс разрешить.

Американский физик Леонард Зюсскинд понял, что никакого парадокса на самом деле нет, поскольку никто не увидит вашего клонирования. Анна будет наблюдать за одним вашим экземпляром, а вы - за другим. Вы с Анной никогда больше не встретитесь и не сможете сравнить наблюдения. А третьего наблюдателя, который мог бы наблюдать за вами как снаружи, так и изнутри черной дыры одновременно, не существует. Таким образом, законы физики не нарушаются.

Разве что вы захотите узнать, какой из ваших экземпляров реален, а какой нет. Живы вы в действительности или умерли?

Правообладатель иллюстрации Thinkstock Image caption Пролетит ли человек сквозь горизонт событий целым и невредимым или врежется в огненную стену?

Дело в том, что никакого "в действительности" нет. Реальность зависит от наблюдателя. Существует "в действительности" с точки зрения Анны и "в действительности" с вашей точки зрения. Вот и всё.

Почти всё. Летом 2012 г. физики Ахмед Альмхеири, Дональд Маролф, Джо Полчински и Джеймс Салли, коллективно известные под английской аббревиатурой из первых букв своих фамилий как AMPS, предложили мысленный эксперимент, который грозил перевернуть наше представление о черных дырах.

По словам ученых, разрешение противоречия, предложенное Зюсскиндом, основывается на том, что разногласие в оценке происходящего между вами и Анной опосредовано горизонтом событий. Неважно, действительно ли Анна видела, как один из двух ваших экземпляров погиб в огне излучения Хокинга, поскольку горизонт событий не давал ей увидеть ваш второй экземпляр, улетающей вглубь черной дыры.

Но что, если бы у Анны имелся способ узнать, что происходит по ту сторону горизонта событий, не пересекая его?

Общая теория относительности говорит нам, что это невозможно, но квантовая механика слегка размывает жесткие правила. Анна могла бы одним глазком заглянуть за горизонт событий при помощи того, что Эйнштейн называл "жутким дальнодействием".

Речь идет о квантовой запутанности - явлении, при котором квантовые состояния двух или более частиц, разделенных пространством, загадочным образом оказываются взаимозависимыми. Эти частицы теперь формируют единое и неделимое целое, а информация, необходимая для описания этого целого, заключена не в той или иной частице, а во взаимосвязи между ними.

Идея, выдвинутая AMPS, звучит следующим образом. Предположим, Анна берет частицу поблизости от горизонта событий - назовем ее частицей A.

Если ее версия произошедшего с вами соответствует действительности, то есть вас убило излучение Хокинга с внешней стороны черной дыры, значит, частица A должна быть взаимосвязана с другой частицей - B, которая также должна находиться с внешней стороны горизонта событий.

Правообладатель иллюстрации Thinkstock Image caption Черные дыры могут притягивать к себе материю близлежащих звезд

Если действительности соответствует ваше видение событий, и вы живы-здоровы с внутренней стороны, тогда частица A должна быть взаимосвязана с частицей C, находящейся где-то внутри черной дыры.

Прелесть этой теории заключается в том, что каждая из частиц может быть взаимосвязана только с одной другой частицей. Это значит, что частица A связана или с частицей B, или с частицей C, но не с обеими одновременно.

Итак, Анна берет свою частицу A и пропускает ее через имеющуюся у нее машинку для расшифровки запутанности, которая дает ответ - связана ли эта частица с частицей B или с частицей C.

Если ответ - C, ваша точка зрения восторжествовала в нарушение законов квантовой механики. Если частица A связана с частицей C, находящейся в недрах черной дыры, то информация, описывающая их взаимозависимость, оказывается навсегда утерянной для Анны, что противоречит квантовому закону, согласно которому информация никогда не теряется.

Если же ответ - B, то, вопреки принципам общей теории относительности, права Анна. Если частица A связана с частицей B, вас действительно испепелило излучение Хокинга. Вместо того, чтобы пролететь сквозь горизонт событий, как того требует теория относительности, вы врезались в стену огня.

Итак, мы вернулись к вопросу, с которого начинали - что произойдет с человеком, попавшим внутрь черной дыры? Пролетит ли он сквозь горизонт событий целым и невредимым благодаря реальности, которая удивительным образом зависит от наблюдателя, или врежется в огненную стену (black holes firewall , не путать с компьютерным термином firewall , "брандмауэр", программным обеспечением, защищающим ваш компьютер в сети от несанкционированного вторжения – Ред .)?

Никто не знает ответа на этот вопрос, один из самых спорных вопросов теоретической физики.

Уже свыше 100 лет ученые пытаются примирить принципы общей теории относительности и квантовой физики в надежде на то, что в конце концов та или другая возобладает. Разрешение парадокса "огненной стены" должно ответить на вопрос, какие из принципов взяли верх, и помочь физикам создать всеобъемлющую теорию.

Правообладатель иллюстрации Thinkstock Image caption А может, в следующий раз отправить в черную дыру Анну?

Решение парадокса исчезновения информации может крыться в дешифровальной машинке Анны. Определить, с какой именно другой частицей взаимосвязана частица A, чрезвычайно трудно. Физики Дэниэл Харлоу из Принстонского университета в Нью-Джерси и Патрик Хайден, который сейчас работает в калифорнийском Стэнфордском университете в Калифорнии, задались вопросом, сколько на это потребуется времени.

В 2013 г. они подсчитали, что даже при помощи наибыстрейшего компьютера, который возможно создать в соответствии с физическими законами, Анне потребовалось бы чрезвычайно много времени на то, чтобы расшифровать взаимосвязь между частицами - настолько много, что к тому моменту, как она получит ответ, черная дыра давным-давно испарится.

Если это так, вероятно, Анне просто не суждено когда-либо узнать, чья точка зрения соответствует действительности. В этом случае обе истории останутся одновременно правдивыми, реальность - зависящей от наблюдателя, и ни один из законов физики не будет нарушен.

Кроме того, связь между сверхсложными вычислениями (на которые наш наблюдатель, по всей видимости, не способен) и пространственно-временным континуумом может натолкнуть физиков на какие-то новые теоретические размышления.

Таким образом, черные дыры - не просто опасные объекты на пути межзвездных экспедиций, но и теоретические лаборатории, в которых малейшие вариации в физических законах вырастают до таких размеров, что ими уже невозможно пренебречь.

Если где-то и таится истинная природа реальности, искать ее лучше всего в черных дырах. Но пока у нас нет четкого понимания того, насколько безопасен для человека горизонт событий, наблюдать за поисками безопаснее все же снаружи. В крайнем случае можно в следующий раз отправить в черную дыру Анну - теперь ее очередь.

Все знают, что в космосе есть звезды, планеты, астероиды и кометы, которые можно наблюдать невооруженным взглядом или в телескоп. Также известно, что существуют особенные космические объекты – черные дыры.

В черную дыру может превратиться звезда к концу своей жизни. В процессе этой трансформации звезда очень сильно сжимается, при этом ее масса сохраняется. Звезда превращается в маленький, но очень тяжелый шарик. Если предположить, что наша планета Земля станет чёрной дырой, то её диаметр в таком состоянии будет составлять всего 9 миллиметров. Но Земля не сможет превратиться в чёрную дыру, потому что в ядре планет происходят совсем другие реакции, не такие как в звёздах.

Настолько сильное сжатие и уплотнение звезды происходит от того, что под влиянием термоядерных реакций в центре звезды ее сила притяжения сильно увеличивается и начинает притягивать поверхность звезды к ее центру. Постепенно скорость, с которой звезда сжимается, увеличивается и в итоге начинает превышать скорость света. Когда звезда достигает такого состояния, она перестает светиться, потому что частицы света – кванты – не могут преодолеть силу притяжения. Звезда в таком состоянии перестаёт излучать свет, он остаётся «внутри» гравитационного радиуса – той границы, внутри которой все объекты притягиваются к поверхности звезды. Эту границу астрономы называют горизонтом событий. А за пределами этой границы сила притяжения чёрной дыры снижается. Поскольку частицы света не могут преодолеть гравитационную границу звезды, обнаружить чёрную дыру можно только по приборам, например, если по непонятным причинам космический корабль или другое тело – комета или астероид начнут менять свою траекторию движения, значит скорее всего оно попало под воздействие гравитационных сил чёрной дыры. Управляемый космический объект в такой ситуации должен срочно включать все двигатели и покидать зону опасного притяжения, а если мощности не хватит, значит он неизбежно будет поглощён чёрной дырой.

Если бы Солнце могло превратиться в черную дыру, то планеты Солнечной системы оказались бы внутри гравитационного радиуса Солнца и оно их притянуло бы и поглотило. К счастью для нас, этого не произойдет, т.к. превратиться в черную дыру могут только очень большие, массивные звезды. Солнце для этого слишком мало. В процессе эволюции Солнце скорее всего станет потухшим черным карликом. Другие черные дыры, которые есть в космосе уже сейчас, для нашей планеты и земных космических кораблей не опасны – слишком далеко от нас они находятся.

В популярном сериале "Теория большого взрыва", который можно посмотреть вы не узнаете секреты сотворения Вселенной или причины возникновения черных дыр в космосе. Главные герои увлечены наукой и работают на кафедре физики в университете. Они постоянно попадают в различные нелепые ситуации, за которыми весело смотреть.

Для того, чтобы образовалась черная дыра, нужно сжать тело до некоторой критической плотности так, чтобы радиус сжатого тела оказался равным его гравитационному радиусу. Величина этой критической плотности обратно пропорциональна квадрату массы черной дыры.

Для типичной черной дыры звездной массы (M =10M sun) гравитационный радиус равен 30 км, а критическая плотность 2·10 14 г/см 3 , то есть двести миллионов тонн в кубическом сантиметре. Эта плотность очень велика по сравнению со средней плотностью Земли (5,5 г/см 3), она равна плотности вещества атомного ядра.

Для черной дыры в ядре галактики (M =10 10 M sun) гравитационный радиус равен 3·10 15 см = 200 а.е., что в пять раз больше расстояния от Солнца до Плутона (1 астрономическая единица - среднее расстояние от Земли до Солнца - равна 150 млн. км или 1,5·10 13 см). Критическая плотность при этом равна 0,2·10 –3 г/см 3 , что в несколько раз меньше плотности воздуха, равной 1,3·10 –3 г/см 3 (!).

Для Земли (M =3·10 –6 M sun) гравитационный радиус близок к 9 мм, а соответствующая критическая плотность чудовищно велика: ρ кр = 2·10 27 г/см 3 , что на 13 порядков выше плотности атомного ядра.

Если мы возьмем некий воображаемый сферический пресс и будем сжимать Землю, сохраняя ее массу, то когда мы уменьшим радиус Земли (6370 км) в четыре раза, ее вторая космическая скорость возрастет вдвое и станет равной 22,4 км/c. Если же мы сожмем Землю так, что ее радиус станет равным примерно 9 мм, то вторая космическая скорость примет значение, равное скорости света c = 300000 км/с.

Дальше пресс не понадобится - сжатая до таких размеров Земля уже сама будет сжиматься. В конце концов, на месте Земли образуется черная дыра, радиус горизонта событий которой будет близок к 9 мм (если пренебречь вращением образовавшейся черной дыры). В реальных условиях, разумеется, никакого сверхмощного пресса нет - «работает» гравитация. Именно поэтому черные дыры могут образовываться лишь при коллапсе внутренних частей весьма массивных звезд, у которых гравитация достаточно сильна, чтобы сжать вещество до критической плотности.

Эволюция звезд

Черные дыры образуются на конечных стадиях эволюции массивных звезд. В недрах обычных звезд идут термоядерные реакции, выделяется огромная энергия и поддерживается высокая температура (десятки и сотни миллионов градусов). Силы гравитации стремятся сжать звезду, а силы давления горячего газа и излучения противостоят этому сжатию. Поэтому звезда находится в гидростатическом равновесии.

Кроме того, в звезде может существовать тепловое равновесие, когда энерговыделение, обусловленное термоядерными реакциями в ее центре, в точности равно мощности, излучаемой звездой с поверхности. При сжатии и расширении звезды тепловое равновесие нарушается. Если звезда стационарна, то ее равновесие устанавливается так, что отрицательная потенциальная энергия звезды (энергия гравитационного сжатия) по абсолютной величине всегда вдвое больше тепловой энергии. Из-за этого звезда обладает удивительным свойством - отрицательной теплоемкостью. Обычные тела имеют положительную теплоемкость: нагретый кусок железа, остывая, то есть, теряя энергию, понижает свою температуру. У звезды же все наоборот: чем больше она теряет энергии в виде излучения, тем выше становится температура в ее центре.

Эта странная, на первый взгляд, особенность находит простое объяснение: звезда, излучая, медленно сжимается. При сжатии потенциальная энергия превращается в кинетическую энергию падения слоев звезды, и ее недра разогреваются. Причем тепловая энергия, приобретаемая звездой в результате сжатия, вдвое больше энергии, которая теряется в виде излучения. В итоге температура недр звезды растет, и осуществляется непрерывный термоядерный синтез химических элементов. Например, реакция преобразования водорода в гелий в нынешнем Солнце идет при температуре 15 миллионов градусов. Когда, через 4 миллиарда лет, в центре Солнца водород весь превратится в гелий, для дальнейшего синтеза атомов углерода из атомов гелия потребуется значительно более высокая температура, около 100 миллионов градусов (электрический заряд ядер гелия вдвое больше, чем ядер водорода, и чтобы сблизить ядра гелия на расстояние 10 –13 см требуется гораздо большая температура). Именно такая температура будет обеспечена благодаря отрицательной теплоемкости Солнца к моменту зажигания в его недрах термоядерной реакции превращения гелия в углерод.

Белые карлики

Если масса звезды невелика, так что масса ее ядра, затронутого термоядерными превращениями, менее 1,4M sun , термоядерный синтез химических элементов может прекратиться из-за так называемого вырождения электронного газа в ядре звезды. В частности, давление вырожденного газа зависит от плотности, но не зависит от температуры, поскольку энергия квантовых движений электронов много больше энергии их теплового движения.

Высокое давление вырожденного электронного газа эффективно противодействует силам гравитационного сжатия. Поскольку давление не зависит от температуры, потеря энергии звездой в виде излучения не приводит к сжатию ее ядра. Следовательно, гравитационная энергия не выделяется в виде добавочного тепла. Поэтому температура в эволюционирующем вырожденном ядре не растет, что приводит к прерыванию цепочки термоядерных реакций.

Внешняя водородная оболочка, не затронутая термоядерными реакциями, отделяется от ядра звезды и образует планетарную туманность, светящуюся в линиях излучения водорода, гелия и других элементов. Центральное компактное и сравнительно горячее ядро проэволюционировавшей звезды небольшой массы представляет собой белый карлик - объект с радиусом порядка радиуса Земли (~10 4 км), массой менее 1,4M sun и средней плотностью порядка тонны в кубическом сантиметре. Белые карлики наблюдаются в большом количестве. Их полное число в Галактике достигает 10 10 , то есть около 10% от всей массы наблюдаемого вещества Галактики.

Термоядерное горение в вырожденном белом карлике может быть неустойчивым и приводить к ядерному взрыву достаточно массивного белого карлика с массой, близкой к так называемому чандрасекаровскому пределу (1,4M sun). Такие взрывы выглядят, как вспышки сверхновых I типа, у которых в спектре нет линий водорода, а только линии гелия, углерода, кислорода и других тяжелых элементов.

Нейтронные звезды

Если ядро звезды вырождено, то при приближении его массы к пределу 1,4M sun обычное вырождение электронного газа в ядре сменяется так называемым релятивистским вырождением.

Квантовые движения вырожденных электронов становятся такими быстрыми, что их скорости приближаются к скорости света. При этом упругость газа падает, его способность противодействовать силам гравитации уменьшается, и звезда испытывает гравитационный коллапс. Во время коллапса электроны захватываются протонами, и происходит нейтронизация вещества. Это ведет к формированию из массивного вырожденного ядра нейтронной звезды.

Если исходная масса ядра звезды превышает 1,4M sun , то в ядре достигается высокая температура, и вырождение электронов не происходит на протяжении всей ее эволюции. В этом случае работает отрицательная теплоемкость: по мере потери энергии звездой в виде излучения температура в ее недрах растет, и идет непрерывная цепочка термоядерных реакций превращения водорода в гелий, гелия в углерод, углерода в кислород и так далее, вплоть до элементов группы железа. Реакция термоядерного синтеза ядер элементов, более тяжелых, чем железо, идет уже не с выделением, а с поглощением энергии. Поэтому, если масса ядра звезды, состоящего в основном из элементов группы железа, превышает чандрасекаровский предел 1,4M sun , но меньше так называемого предела Оппенгеймера–Волкова ~3M sun , то в конце ядерной эволюции звезды происходит гравитационный коллапс ядра, в результате которого внешняя водородная оболочка звезды сбрасывается, что наблюдается как вспышка сверхновой звезды II типа, в спектре которой наблюдаются мощные линии водорода.

Коллапс железного ядра приводит к формированию нейтронной звезды.

При сжатии массивного ядра звезды, достигшей поздней стадии эволюции, температура поднимается до гигантских значений порядка миллиарда градусов, когда ядра атомов начинают разваливаться на нейтроны и протоны. Протоны поглощают электроны, превращаются в нейтроны, испуская при этом нейтрино. Нейтроны же, согласно квантово–механическому принципу Паули, при сильном сжатии начинают эффективно отталкиваться друг от друга.

Когда масса коллапсирующего ядра меньше 3M sun , скорости нейтронов значительно меньше скорости света и упругость вещества, обусловленная эффективным отталкиванием нейтронов, может уравновесить силы гравитации и привести к образованию устойчивой нейтронной звезды.

Впервые возможность существования нейтронных звезд была предсказана в 1932 году выдающимся советским физиком Ландау сразу после открытия нейтрона в лабораторных экспериментах. Радиус нейтронной звезды близок к 10 км, ее средняя плотность составляет сотни миллионов тонн в кубическом сантиметре.

Когда масса коллапсирующего ядра звезды больше 3M sun , то, согласно существующим представлениям, образующаяся нейтронная звезда, остывая, коллапсирует в черную дыру. Коллапсу нейтронной звезды в черную дыру способствует также обратное падение части оболочки звезды, сброшенной при взрыве сверхновой.

Нейтронная звезда, как правило, быстро вращается, поскольку породившая ее обычная звезда может иметь значительный угловой момент. Когда ядро звезды коллапсирует в нейтронную звезду, характерные размеры звезды уменьшаются от R = 10 5 –10 6 км до R ≈ 10 км. С уменьшением размера звезды уменьшается ее момент инерции. Для сохранения момента количества движения должна резко вырасти скорость осевого вращения. Например, если Солнце, вращающееся с периодом около месяца, сжать до размеров нейтронной звезды, то период вращения уменьшится до 10 –3 секунды.

Одиночные нейтронные звезды с сильным магнитным полем проявляют себя как радиопульсары - источники строго периодических импульсов радиоизлучения, возникающих при преобразовании энергии быстрого вращения нейтронной звезды в направленное радиоизлучение. В двойных системах аккрецирующие нейтронные звезды демонстрируют феномен рентгеновского пульсара и рентгеновского барстера 1-го типа.

У черной дыры строго периодических пульсаций излучения ожидать не приходится, поскольку черная дыра не имеет наблюдаемой поверхности и магнитного поля. Как часто выражаются физики, черные дыры не имеют «волос» - все поля и все неоднородности вблизи горизонта событий излучаются при формировании черной дыры из коллапсирующей материи в виде потока гравитационных волн. В итоге, у образовавшейся черной дыры имеются лишь три характеристики: масса, угловой момент и электрический заряд. Все индивидуальные свойства коллапсирующего вещества при образовании черной дыры забываются: например, черные дыры, образовавшиеся из железа и из воды, имеют при прочих равных условиях одинаковые характеристики.

Как предсказывает Общая теория относительности (ОТО), звезды, массы железных ядер которых в конце эволюции превышают 3M sun , испытывают неограниченное сжатие (релятивистский коллапс) с образованием черной дыры. Это объясняется тем, что в ОТО силы гравитации, стремящиеся сжать звезду, определяются плотностью энергии, а при громадных плотностях вещества, достигаемых при сжатии столь массивного ядра звезды, главный вклад в плотность энергии вносит уже не энергия покоя частиц, а энергия их движения и взаимодействия. Получается, что в ОТО давление вещества при очень больших плотностях как бы само «весит»: чем больше давление, тем больше плотность энергии и, следовательно, тем больше силы гравитации, стремящиеся сжать вещество. Кроме того, при сильных гравитационных полях становятся принципиально важными эффекты искривления пространства–времени, что также способствует неограниченному сжатию ядра звезды и превращению его в черную дыру (рис. 3).

В заключение отметим, что черные дыры, образовавшиеся в нашу эпоху (например, черная дыра в системе Лебедь X-1), строго говоря, не являются стопроцентными черными дырами, поскольку из-за релятивистского замедления хода времени для далекого наблюдателя горизонты событий у них еще не сформировались. Поверхности таких коллапсирующих звезд выглядят для земного наблюдателя как застывшие, бесконечно долго приближающиеся к своим горизонтам событий.

Чтобы черные дыры из таких коллапсирующих объектов сформировались окончательно, мы должны прождать все бесконечно большое время существования нашей Вселенной. Следует подчеркнуть, однако, что уже в первые секунды релятивистского коллапса поверхность коллапсирующей звезды для наблюдателя с Земли приближается очень близко к горизонту событий, и все процессы на этой поверхности бесконечно замедляются.



Похожие статьи