Уравнения Максвелла. Электромагнитные волны

Основные уравнения классической электродинамики (система уравнений Максвелла) по праву являются общепризнанными уравнениями и широко применяются в физике, радиофизике и электронике. Однако эти уравнения не были получены из общих физических законов, что не позволяло считать их абсолютно точными, допускало различного рода манипуляции с ними. Тем не менее, эти уравнения точные и выводятся из общих принципов физики и основ векторной алгебры .

1. Вывод закона электромагнитной индукции Фарадея

Закон электромагнитной индукции Фарадея можно получить из уравнения для электромагнитных сил, действующих на точечный электрический заряд :

Такая ситуация возникает в проводнике с электрическим током высокой частоты, когда сила, действующая на электрон со стороны первичного электрического поля изменяется настолько быстро, что оказывается в противофазе с силой инерции электронов.

Сократим заряд в равенстве (2) и применим к обеим частям этого равенства операцию «ротор»:

. (3)

Пусть, например, ось z совпадает с направлением аксиального вектора B , тогда радиус-вектор будет иметь вид: r =xi +yj , где i и j – единичные векторы в направлениях осей координат x и y , соответственно. Радиальный векторr не имеет третьей составляющей вдоль оси z , поэтому второе слагаемое в (3) равно –2(∂B /∂t). Первое же слагаемое в уравнении (3) равно ∂B /∂t. В результате, после преобразования правой части последнего равенства, получаем:

. (4)

То есть из электромагнитного силового уравнения (1) в том случае, когда сила, действующая на электрон со стороны магнитного поля, полностью уравновешивается силой со стороны электрического поля, следует закон электромагнитной индукции Фарадея (4), − одно из основных уравнений электродинамики.

Уравнения (2) – (4) не зависят от того, имеется или отсутствует электрон в данной точке пространства. В результате такой независимости электрического и магнитного полей от электрического заряда уравнение (4) отражает пространственно-временные свойства самих изменяющихся полей, представимых в виде единого электромагнитного поля. При этом закон Фарадея (4) не только представляет собой закон электромагнитной индукции, но является и основным законом взаимного преобразования электрического и магнитного полей, − неотъемлемым свойством электромагнитного поля.

2. Вывод уравнения Максвелла

Прежде, чем приступить к выводу уравнения Максвелла, необходимо дополнить векторную алгебру еще одним векторным оператором.

2.1. Определение векторного оператора, выполняющего действие, обратное векторному преобразованию дифференциального векторного оператора «ротор»

Дифференциальный векторный оператор «ротор» выполняет операцию преобразования векторов в пространстве и операцию дифференцирования, то есть является сложным оператором, осуществляющим сразу два вида действий. Это прямо следует из его определения :

,

где а – вектор, i , j , k – единичные векторы в направлении осей прямоугольной (декартовой) системы координат x , y и z , соответственно. При этом оператор, обратный оператору «ротор», в векторном анализе не определен, хотя каждое из выполняемых им преобразований, в принципе, обратимо.

Геометрическая иллюстрация пространственного преобразования вектора а в вектор rot(a ) , осуществляемая оператором «ротор», показана на Рис. 1.


Рис. 1. Геометрическое представление вектора а и векторного поля, образованного оператором «ротор».

2.2. Определение 1. Если два взаимосвязанных векторных поля, представленные векторами а и b , имеют производные по пространственным переменным x , y , z (в виде rota и rotb )и производные по времени, ¶ а t и ¶ b t , причем производная вектора а по времени ортогональна производным по пространственным переменным вектора b , и наоборот, производная по времени вектора b ортогональна производным по пространственным переменным вектораа , то существует векторный оператор, осуществляющий пространственное преобразование векторного поля, не затрагивающее операцию дифференцирования, который условно назовем оператором «rerot », (противоположно закрученный или «реверсивный ротор») такой, что:

и ; (5)

и . (5*)

2.3. Свойства векторного оператора «реверсивный ротор»

2.3.1. Векторный оператор «реверсивный ротор» действует только на производные вектора.

2.3.2. Векторный оператор «реверсивный ротор» располагается перед производной вектора, на которую он действует.

2.3.3. Константы и числовые коэффициенты при производных вектора могут быть вынесены за пределы действия векторных операторов:

где c - константа.

2.3.4. Векторный оператор «реверсивный ротор» действует на каждое из слагаемых уравнения, содержащего сумму векторных производных:

где c и d - константы.

2.3.5. Результат действия векторного оператора «реверсивный ротор» на ноль есть ноль:

При этом результат действия векторного оператора «реверсивный ротор» на другие константы, в том числе на вектор, согласно пункту 2.3.1, не определен.

2.4. Пример применения оператора «реверсивный ротор»

Применим оператор «реверсивный ротор» к уравнению, содержащему взаимосвязанные векторы a и b :

Если теперь еще раз применить оператор «реверсивный ротор» к вновь образованному равенству (**), то получим:

или

, или окончательно:

. ((*))

Последовательное двойное (или любое четное) применение оператора «реверсивный ротор» приводит к исходному равенству. Этим самым векторный оператор «реверсивный ротор» осуществляет не только взаимное преобразование дифференциальных уравнений взаимосвязанных векторных полей, но и устанавливает эквивалентность этих уравнений.

Геометрически это выглядит так. Оператор «ротор» дифференцирует и как бы закручивает прямолинейное векторное поле, делая его вихревым и ортогональным исходному векторному полю. Векторный оператор «реверсивный ротор» выполняет векторное преобразование, которое как бы раскручивает вихревое поле, закрученное оператором «ротор», превращая его в изменяющееся невихревое поле, представленное производной вектора по времени. Поскольку интегрирование не производится, производная вектора по времени соответствует изменению величины вектора. В результате имеем изменение вектора, величина которого изменяется в единственном направлении, ортогональном пространственным переменным оператора «ротор». И наоборот, векторный оператор «реверсивный ротор» закручивает невихревое изменяющееся векторное поле, представленное производной вектора по времени, превращая его в вихревое пространственное векторное поле, ортогональное исходной производной вектора по времени. Так как направление «кручения» оператора «реверсивный ротор» противоположно направлению вращения, осуществляемому оператором «ротор», то знак вновь образованного вихревого поля выбирается противоположным (отрицательным). То есть векторный оператор «реверсивный ротор» выполняет действие, обратное пространственному преобразованию оператора «ротор» на всем «пространстве» производных векторных полей. В то же время векторный оператор «реверсивный ротор» сам не дифференцирует вектор, на производную которого он действует. Этим самым осуществляется тождественное обратимое векторное преобразование.

Если ввести в векторный анализ интегральный векторный оператор, восстанавливающий не производную вектора, а сам вектор из ротора вектора (условно назовем такой оператор обратным ротором, или «rot -1 »), то такой оператор наряду с обратным векторным преобразованием одновременно должен производить операцию интегрирования.

Однако, в силу неоднозначности математической операции интегрирования, полностью обратный «ротору» оператор rot -1 не осуществляет однозначное обратное векторное преобразование.

2.5. Применение векторного оператора «реверсивный ротор» к физическим полям

При применении векторного оператора «реверсивный ротор» к физическим векторным полям необходимо учитывать изменение размерности правой и левой частей уравнения из-за перестановки переменных x , y , z и t при преобразовании. Обозначим размерность координат – метр (L ), а времени – секунда (T ).

Определение 2. Для физических векторных полей векторный оператор «реверсивный ротор», определяется следующим образом:

и ; (6)

и . (6*)

Обозначая размерное отношение L/T , как константу v , имеющую размерность скорости, [м/с], уравнения (6.4) и (6.4*) можно представить в виде:

и ; (7)
и . (7*)

2.6. Применение оператора «реверсивный ротор» к физическим полям

Применим векторный оператор «реверсивный ротор», определенный уравнениями (7), (7*), к уравнению (4), связывающему реальные физические поля E и B в электродинамике:

;

, что преобразуется к виду:

(8)
>.

Электродинамическая постоянная «v » не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия, 2.99792458Ч 10 8 м/c, которая называется также скоростью света в вакууме.

То есть с помощью векторного преобразования «реверсивный ротор» из уравнения (4), представляющего собой закон электромагнитной индукции Фарадея, естественным образом вытекает одно из основных уравнений электродинамики - уравнение Максвелла (8), которое не следует ни из эксперимента, ни из известных физических законов. Уравнения (4) и (8) являются взаимосвязанными, трансформируемыми друг в друга при помощи векторного преобразования, что соответствует их физической эквивалентности. Поэтому справедливость одного из этих уравнений, установленная в виде физического закона (в данном случае - это закон электромагнитной индукции Фарадея (4)) является достаточным условием для утверждения о справедливости второго уравнения (уравнения Максвелла (8)) в качестве эквивалентного физического закона.

2.7. Трансформация векторных полей

Если исходить из определения оператора «ротор», то действие векторного оператора «обратный ротор», казалось бы, можно представить в виде, показанном на Рис. 2, где предполагается некоторая тождественность векторных полей до и после векторного преобразования дифференциальным векторным оператором «ротор».

Проверим это предположение. Применим оператор «реверсивный ротор» к уравнению:

, откуда следует:

Полученное равенство изменяет направление векторов в исходном определении дифференциального векторного оператора «ротор», что недопустимо.

Поэтому .

Применение векторного оператора «реверсивный ротор» к производным одного и того же векторного поля показывает принципиальное различие между векторным полем до применения, и векторным полем после применения оператора «ротор». Это означает необходимость представлять поле вектора а и поле вектора rot(а ) как трансформируемые друг в друга, но различные векторные поля.

Исходное векторное поле, представленное вектором а , будем считать первичным (причиной), а поле, образованное векторным преобразованием оператора «ротор», будем считать вторичным полем (следствием действия оператора «ротор») и обозначим его, как поле векторов b .


Рис. 2. Результат отождествления векторных полей до и после векторного преобразования «ротор». Направление полей не соответствует исходному определению оператора «ротор», показанному на Рис. 1, — «правый винт» превращается в «левый винт».

Тогда обратное преобразование векторных полей, не затрагивающее операции дифференцирования, во введенных таким образом обозначениях будет иметь вид, показанный на Рис. 3.


Рис. 3. Определение векторного преобразования, обратного операции «ротор», не затрагивающего операции дифференцирования. Разделение векторных полей выполнено по признаку причинно-следственных отношений. Исходное поле представлено вектором а (причина), а поле, образованное операцией «ротор», представлено вектором b (следствие).

В электродинамике в некоторых простейших случаях переход к вращающейся системе отсчета, внутри которой исчезает вращение, приводит к отсутствию сил со стороны магнитного поля, и силовое воздействие может быть представлено только силой со стороны электрического поля. Но из этого никак не следует вывод, что магнитного поля нет или оно всегда может быть заменено электрическим полем. Частный случай векторного поля, взятого в отдельной изолированной системе отсчета, относится только к данной выбранной системе, в которой осуществляется ограниченное по степеням свободы движение электрического заряда.

Поскольку в пространстве существуют и прямолинейные векторные поля, и вращающиеся замкнутые векторные поля, а находиться в двух системах отсчета одновременно невозможно, то в общем случае выбором системы координат нельзя свести одно поле к другому. Источник этих полей один – это электрические заряды. Электрические заряды создают вокруг себя электрическое поле (всесторонне направленное векторное поле), а движение электрических зарядов создает магнитное поле (замкнутое круговое векторное поле). При этом, естественно, прямолинейное движение электрических зарядов создает вокруг них круговое магнитное поле, а круговое движение электрических зарядов (равно как вращение электрически заряженных частиц вокруг собственной оси) создает прямолинейное в пространстве магнитное поле, заключенное в объеме, ограниченном радиусом вращения.

2.8. Скорость распространения электромагнитного взаимодействия

Скорость преобразования векторных полей друг в друга не зависит ни от величины полей, ни от скорости их изменения и, как следует из волнового уравнения, соответствует скорости распространения волны электромагнитного взаимодействия в свободном пространстве (вакууме), 2.99792458Ч 10 8 м/c, и эта величина по праву называется электродинамической постоянной.

Таким образом, изменение электрического и магнитного полей, осуществляемое в трехмерном пространстве, имеет свойство взаимного преобразования векторов, и это свойство в электродинамике осуществляется посредством закона электромагнитной индукции Фарадея. Если считать такое преобразование прямым, то обратное преобразование векторных полей осуществляется при помощи уравнения, полученного Максвеллом интуитивным путем, и которое можно получить при помощи векторного оператора «реверсивный ротор». Взаимное преобразование электрического и магнитного полей, которое осуществляется без источников электрического заряда, представляет собой один из особых видов волнового движения - поперечную электромагнитную волну, которая переносит электромагнитную энергию в свободном пространстве с абсолютной скоростью преобразования полей. Но при этом источником энергии электромагнитной волны всегда являются ускоренно движущиеся электрические заряды.

3. Уравнения источников электромагнитных полей.

Оставшиеся два из четырех основных уравнений системы уравнений Максвелла лишь устанавливают факт наличия в природе электрических зарядов, создающих электрическое поле (теорема Гаусса, которая прямо следует из закона Кулона):

и факт отсутствия в природе магнитных зарядов:

Литература

  1. Сокол-Кутыловский О.Л. Гравитационные и электромагнитные силы. Екатеринбург, 2005.
  2. Сокол-Кутыловский О.Л. Русская физика. Екатеринбург, 2006.
  3. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗОВ (под редакцией Г. Гроше и В. Циглера), М., «Наука», 1980.

Сокол-Кутыловский О.Л., Вывод основных уравнений электродинамики // «Академия Тринитаризма», М., Эл № 77-6567, публ.13648, 11.08.2006


В основе теории Максвелла лежат рас­смотренные четыре уравнения:

1. Электрическое поле мо­жет быть как потенциальным (e q), так и вихревым (Е B), поэтому напряженность суммарного поля Е =Е Q +Е B . Так как циркуляция вектора e q равна нулю, а циркуляция вектора Е B оп­ределяется выражением, то цир­куляция вектора напряженности суммар­ного поляЭто уравнение показывает, что источни­ками электрического поля могут быть не только электрические заряды, но и меняю­щиеся во времени магнитные поля.

2. Обобщенная теорема о циркуляции вектора Н : Это уравнение показывает, что магнит­ные поля могут возбуждаться либо дви­жущимися зарядами, либо переменными электрическими полями.

3. Теорема Гаусса для поля D : Если заряд распределен внутри замкнутой поверхности непрерывно с объемной плот­ностью, то формула запишется в виде

4. Теорема Гаусса для поля В: Итак,полная система уравнений Максвел­ла в интегральной форме: Величины, входящие в уравнения Мак­свелла, не являются независимыми и меж­ду ними существует следующая связь:D = 0 E , В=  0 Н, j =E , где  0 и  0 - соответственно электриче­ская и магнитная постоянные,  и  - соответственно диэлектрическая и магнит­ная проницаемости,  - удельная прово­димость вещества.

Для стационарных полей (Е= const и В =const) уравнения Максвелла при­мут вид т. е. источниками электрического поля в данном случае являются только электри­ческие заряды, источниками магнитно­го - только токи проводимости. В данном случае электрические и магнитные поля независимы друг от друга, что и позволяет изучать отдельно постоянные электриче­ское и магнитное поля.

Воспользовавшись известными из векторного анализа теоремами Стокса и Гаусса можно представитьполную систему урав­нений Максвелла в дифференциальной форме :

Уравнения Максвелла - наиболее об­щие уравнения для электрических и маг­нитных полей в покоящихся средах. Они играют в учении об электромагнетизме такую же роль, как законы Ньютона в ме­ханике. Из уравнений Максвелла следует, что переменное магнитное поле всегда свя­зано с порождаемым им электрическим полем, а переменное электрическое поле всегда связано с порождаемым им магнит­ным, т. е. электрическое и магнитное поля неразрывно связаны друг с другом - они образуют единое электромагнитное поле.

66. Дифференциальное уравнение электромагнитной волны. Плоские электромагнитные волны.

Для однородной и изотропной среды вдали от зарядов и токов, создаю­щих электромагнитное поле, из уравнений Максвелла следует, что векторы напряженностей Е и Н переменного электро­магнитного поля удовлетворяют волново­му уравнению типа:

-оператор Лапласа.

Т.е. электро­магнитные поля могут су­ществовать в виде электромагнитных волн. Фазовая скорость электромагнитных волн определяется выражением (1) v - фазовая ско­рость, где с= 1/ 0  0 ,  0 и  0 - соответственно электрическая и магнитная постоянные,  и  - соответственно электрическая и магнитная проницаемости среды.

В вакууме (при =1 и =1) скорость распространения электромагнитных волн совпадает со скоростью с. Так как > 1, то скорость распространения электро­магнитных волн в веществе всегда мень­ше, чем в вакууме.

При вычислении скорости распростра­нения электромагнитного поля по формуле (1) получается результат, достаточно хорошо совпадающий с эксперименталь­ными данными, если учитывать зависи­мость  и , от частоты. Совпадение же размерного коэффициента в со скоростью распространения света в вакуу­ме указывает на глубокую связь между электромагнитными и оптическими явле­ниями, позволившую Максвеллу создать электромагнитную теорию света, согласно которой свет представляет собой электро­магнитные волны.

Следствием теории Максвелла являет­ся поперечность электромагнитных волн: векторыЕ и Н напряженностей электриче­ского и магнитного полей волны взаимно перпендикулярны (рис. 227) и лежат в плос­кости, перпендикулярной вектору v скоро­сти распространения волны, причем векто­ры Е , Н и v образуют правовинтовую систему. Из уравнений Максвелла следует также, что в электромагнитной волне век­торы Е и Н всегда колеблются в одина­ковых фазах (см. рис. 227), причем мгно­венные значения £ и Я в любой точке связаны соотношением  0 = 0 Н. (2)

Этим уравнениям удов­летворяют, в частности, плоскиемонохро­матические электромагнитные волны (электромагнитные волны одной строго определенной частоты), описываемые уравнениями Е у 0 cos(t-kx+), (3) H z = H 0 cos (t-kx+), (4), где е 0 и Н 0 - соответственно амплитуды напряженностей электрического и магнит­ного полей волны,  - круговая частота волны, k=/v- волновое число, - начальные фазы колебаний в точках с ко­ординатой х= 0. В уравнениях (3) и (4)  одинаково, так как колебания электрического и магнитного векторов в электромагнитной волне происходят с одинаковой фазой.

Используем формулу Стокса , согласно которой циркуляция вектора по замкнутому контуру L равна потоку ротора этого вектора через поверхность, опирающуюся на этот контур. Тогда:

Пусть S произвольная неизменная во времени поверхность, ограниченная контуром L. Тогда система уравнений (1.2.7) перепишется так:

Поскольку контур интегрирования в полученных интегралах произволен, равенство нулю интегралов возможно только при равенстве нулю подынтегральных выражений. Тогда:

Уравнения (1.3.2) и есть уравнения Максвелла.

В большей части курса мы будем рассматривать поля, изменяющиеся во времени по гармоническому закону:

Для которых принята комплексная форма записи:

Где комплексная амплитуда. При комплексной форме записи гармонических полей производная по времени заменяется умножением на .

Тогда уравнения Максвелла (1.3.2) для полей, изменяющихся по гармоническому закону, принимают вид:

Найдем решение уравнений Масквелла для простейшего случая распространения электромагнитной волны в вакууме.

В вакууме , . Поэтому для вакуума уравнения Максвелла (1.3.4) принимают вид:

Исключим Из (1.3.5). Для этого применим операцию Rot К обеим частям первого уравнения: . Теперь подставим значение из второго уравнения. В результате получим:

Используем известное соотношение векторной алгебры

Вспомним, что в соответствии с теоремой Гаусса-Остроградского

И учтем, что в вакууме свободных зарядов нет (т. е. ). Подставим (1.3.8) и (1.3.7) в (1.3.6). В результате получаем:

Полученное уравнение носит название Волновое уравнение . Аналогичным образом можно получить волновое уравнение относительно вектора магнитного поля .

Наиболее наглядным решением волнового уравнения является сферическая волна, распространяющаяся вокруг точечного излучателя. Чтобы получить решение для сферической волны, нужно представить оператор Лапласа в уравнении (1.3.9) в сферической системе координат, что приведет к достаточно громоздким математическим выражениям. С целью упрощения математических процедур мы рассмотрим решение волнового уравнения для плоской волны, являющейся функцией одной координаты.

Рис.1.3.1. показана схема расположения силовых линий сферической электромагнитной волны. Рисунок иллюстрирует тот факт, что на больших расстояниях от излучателя электромагнитное поле можно рассматривать как плоскую волну, распространяющуюся вдоль направления, перпендикулярного плоскости постоянной фазы, причем характеристики волны зависят только от одной координаты вдоль направления распространения. Несмотря на то, что в общем случае волна имеет сферическую симметрию, в ограниченной области, обозначенной квадратом, можно говорить о плоской волне, характеристики которой зависят только от одной координаты.

Примем во внимание, что одномерный оператор Лапласа имеет следующий вид:

И получим одномерное волновое уравнение для плоской волны:

Рис.1.3.1. Схема силовых линий напряженности электрического и магнитного полей сферической электромагнитной волны.

Любое дифференциальное уравнение приобретает физический смысл, если заданы граничные условия для его решения. Решение уравнения (1.3.11) получается в виде двух волн, распространяющихся вдоль положительного и отрицательного направлений оси z. Примем в качестве граничных условий утверждение, что в рассматриваемой среде плоская волна может распространяться только в одном направлении. Итак, мы имеем решение уравнения (1.3.11) для плоской волны, распространяющейся вдоль положительного направления оси z:

Фаза волны:

Где K — волновое число (в общем случае волновой вектор).

Фиксированная ориентация вектора напряженности поля вдоль заданной координатной оси носит название Поляризации волны . Соотношение (1.3.12) задает поляризацию напряженности электрического поля вдоль оси Х .

На рис.1.3.2. показано положение плоскости постоянной фазы для двух моментов времени.

Рис.1.3.2. Движение плоскости постоянной фазы.

Для плоскости постоянной фазы (φ = const), которая движется вдоль оси z, ее производная по времени равна нулю:

В соответствии с (1.1.26) получаем:

Где - скорость движения поверхности неизменной фазы или Фазовая скорость.

Подставив (1.3.12) в (1.3.11) получим

И, сократив , получим Дисперсионное уравнение для плоской волны в свободном пространстве :

Или (1.3.16)

Разные знаки в выражении для K соответствуют волнам, распространяющимся вдоль оси Z в разных направлениях. В соответствии с (1.3.14):

В свободном пространстве , где C — скорость света.

Таким образом, из уравнений Максвелла следует, что скорость света в свободном пространстве определяется диэлектрической и магнитной проницаемостями вакуума:

Диэлектрическая и магнитная проницаемость вакуума – это характеристики пространства, связанные со статическими полями. Первая из них характеризует только диэлектрические свойства среды. А вторая – только магнитные свойства. Результат решения уравнений Масквелла, представленный формулой (1.3.18), связывает воедино электростатику, магнитостатику и динамический процесс распространения света.

Действительно, диэлектрическую проницаемость можно получить экспериментально путем измерения силы взаимодействия двух известных зарядов Q1 и Q2 расположенных на расстоянии R друг от друга:

(закон Кулона).

.

Магнитную проницаемость можно получить, измерив силу взаимодействия двух проводников длиной и с током и соответственно, расположенных на расстоянии R друг от друга:

(закон Био-Савара-Лапласа)

Таким образом, из статического эксперимента можно получить численное значение .

Следовательно, уравнения Максвелла позволяют выразить скорость света через характеристики, полученные с помощью статических измерений.

Уравнения Максвелла связывают воедино электрическое поле, магнитное поле и электромагнитные волны (свет). Создание концепции электромагнитного поля и формулировка уравнений, его описывающих, послужили одной из важнейших отправных точек физики XX века.

Общая форма записи волнового процесса

Определение 1

Допустим, что физическая величина $s$ распространяется в направлении $X$ со скоростью $v$. Данная величина ($s$) может быть смещением, скоростью кусочков резинового шнура, когда в шнуре проходит механическая волна. Если мы имеем дело с электромагнитной волной, то под $s$ можно понимать напряженность электрического поля или индукцию магнитного поля и т.д. Общая форма записи волнового процесса представляется как:

где $t$ -- время, $x$ -- координата точки, которую рассматривают, $f$ - символ функции.

Любая произвольная функция, имеющая исключительно аргумент $\left(t-\frac{x}{v}\right)$, отражает волновой процесс.

Положим, что наблюдатель перемещается по $оси X$ со скоростью $v$. Его координата может быть определена как:

Подставим правую часть выражения (2) в формулу (1) вместо переменной $x$, получим:

Из выражения (3) следует, что функция $f\left(-\frac{x_0}{v}\right)$ не зависит от времени, что означает $s$ распространяется со скоростью $v$.

Аналогично можно получить, что если процесс записан как:

то $s$ распространяется против избранной $оси X$. Если положить, что $t=0$, то из выражений (1) и (4) имеем:

Выражение (5) определяет распределение $s$ в начальный момент времени. В том случае, если $s$ напряженность магнитного поля в электромагнитной волне, то формула (5) - задает распределение магнитного поля в пространстве при $t=0$. Получается, что вид функции $f$ зависит от начальных условий процесса.

Итак, выражения (1) и (4) являются общим выражением для волны, которая распространяется вдоль $оси X$.

Волновое уравнение

Определение 2

Функция $s$ удовлетворяет простому дифференциальному уравнению. Для его нахождения продифференцируем выражения (1) и (4), объединив их, используя знак $\mp $, дважды по координате $x$:

\[\frac{{\partial }^2s}{\partial x^2}=\frac{1}{v^2}f^{""}\left(6\right).\]

Вторая частная производная по времени будет иметь вид:

\[\frac{{\partial }^2s}{\partial t^2}=f^{""}\left(7\right).\]

Используя выражения (6) и (7) запишем:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\frac{\partial^2s}{\partial x^2}\left(8\right).\]

Уравнение (8) называют волновым . В том случае, если волна распространяется не в одном, во всех направлениях пространства, то волновое уравнение примет вид:

\[\frac{{\partial }^2s}{\partial t^2}=v^2\left(\frac{{\partial }^2s}{\partial x^2}+\frac{{\partial }^2s}{\partial y^2}+\frac{{\partial }^2s}{\partial z^2}\right)\left(9\right).\]

Замечание

В том случае, если физическая величина распространяется в виде волны, то она должна удовлетворять волновому уравнению. Справедливо обратное утверждение: Если какая - либо величина подчиняется волновому уравнению, то она распространяется как волна. Скорость распространения волны будет равна квадратному корню из коэффициента, который стоит при сумме пространственных производных.

Электромагнитные волны

Рассмотрим электромагнитное поле в однородном диэлектрике ($j_x=j_y=j_z=0$). Причем будем считать задачу одномерной, то есть предположим, что векторы $\overrightarrow{E}\ и\ \overrightarrow{H}$ зависят только от одной координаты $x$ и времени $t$. Такая ситуация означает, что все пространство мы можем разделить на тонике слои (толщина слоя стремится к нулю), плоские слои, внутри них $\overrightarrow{E}\ и\ \overrightarrow{H}$ принимают одно и тоже значение во всех точках. Данная задача соответствует плоской электромагнитной волне. Для описания электромагнитного поля используем систему уравнений Максвелла:

Для одномерного случая система уравнений Максвелла существенно упрощается, так как все производные по $y$ и $z$ равны нулю. Записав уравнение (10) в скалярном представлении:

Становится очевидным, что в однородной среде для одномерного случая:

Аналогично из уравнения (11) получаем, что:

Выражения (15) и (16) означают, что данные составляющие электромагнитного поля не зависят от времени. А из уравнений (12) и (13) следует, что $D_x$и $B_x$ - не зависят от координаты. В результате мы имеем, что $D_x=const,\ B_x=const$.

Остальные уравнения из группы (14) примут вид:

От группы уравнений в скалярной форме, которые представляют выражение (11), остаются:

Уравнения (17) и (18) сгруппируем как две независимые части. Первая - связывающая $y$-составляющую электрического поля и $z$-составляющую магнитного поля:

Вторая часть связывает $z$-компоненту электрического поля и $y$-компоненту магнитного поля:

Получается, что переменное (во времени) электрическое поле ($D_y$) порождает одну $z$-составляющую магнитного поля ($H_z$), переменное магнитное поле $B_z$ вызывает появление электрического поля направленного по $оси Y$ ($E_y$) (уравнения 19). То есть в электромагнитном поле электрическое и магнитные поля перпендикулярны друг другу. Аналогичный вывод можно сделать из пары (20).

Для одномерного случая систему уравнений Максвелла можно записать в виде:

Электрическое и магнитные поля могут существовать как волны, так как из уравнения Максвелла следует существование этих волн. Так как для напряженности электрического поля выполняется уравнение вида:

Следовательно, решение этого уравнения можно представить как:

Так как для напряженности магнитного поля выполняется уравнение вида:

следовательно, решение этого уравнения можно представить как:

Пример 1

Задание: Покажите, на примере одномерного случая электромагнитного поля, что из уравнений Максвелла следует волновой характер электромагнитного поля.

Решение:

В качестве основы для решения задачи используем уравнения Максвелла для одномерного случая:

\[\frac{\partial D}{\partial t}=-\frac{\partial H}{\partial x},\ \frac{\partial B}{\partial t}=-\frac{\partial E}{\partial x}\left(1.1\right).\]

Исключим из уравнений (1.1) магнитное поле $H$. С этой целью умножим первое уравнение на $\mu {\mu }_0$ и возьмем частную производную по времени от обеих частей равенства и, используя выражение: $D=\varepsilon_0\varepsilon E$, заменим электрическую индукцию на напряженность соответствующего поля, получим:

\[{\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.2\right).\]

Второе уравнение в группе (1.1) продифференцируем по $x$, заменим индукцию магнитного поля на его напряженность, используя выражение: $B=\mu {\mu }_0H$, при этом имеем:

\[\frac{{\partial }^2E}{\partial x^2}=-\mu {\mu }_0\frac{{\partial }^2H}{\partial x\partial t}\left(1.3\right).\]

Как мы видим, правые части выражений (1.2) и (1.3) одинаковы, следовательно, можно считать, что:

\[\frac{{\partial }^2E}{\partial x^2}={\mu {\mu }_0\varepsilon }_0\varepsilon \ \frac{{\partial }^2E}{\partial t^2}\to \frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(1.4\right).\]

Аналогичное уравнение легко получить для напряженности магнитного поля, если исключить напряженность электрического поля. Уравнение (1.4) -- есть волновое уравнение.

Ответ: Волновое уравнение для напряженности электрической составляющей электромагнитного поля получено непосредственно из уравнений Максвелла для одномерной задачи.

Пример 2

Задание: Чему равна скорость ($v$) распространения электромагнитной волны ?

Решение:

За основу решения примем волновое уравнение для напряженности электрического поля в плоской электромагнитной волне:

\[\frac{{\partial }^2E}{\partial t^2}=\frac{1}{{\mu {\mu }_0\varepsilon }_0\varepsilon }\frac{{\partial }^2E}{\partial x^2}\left(2.1\right).\]

Скоростью распространения волны является корень квадратный из коэффициента, который находится перед $\frac{{\partial }^2E}{\partial x^2}$ в волновом уравнении, следовательно:

где $c$ -- скорость распространения света в вакууме.

Ответ: $v=\frac{c}{\sqrt{\mu \varepsilon}}.$

В технике СВЧ интерес представляет в основном поля, изменяющиеся во времени по гармоническому закону (т.е. носят синусоидальный характер).

Пользуясь комплексным методом, запишем векторы электрического и магнитного полей:

,
, (33)

где – круговая частота
.

Подставим эти выражения в I и II – е уравнения Максвелла

,
.

После дифференцирования имеем:

, (34)

. (35)

Уравнение (34) можно преобразовать к виду:

,

где
– комплексная относительная диэлектрическая проницаемость с учётом потерь в среде.

Отношение мнимой части комплексной относительной диэлектрической проницаемости к действительной представляет тангенс угла диэлектрических потерь
. Таким образом уравнения Максвелла для гармонических колебаний при отсутствии свободных зарядов
имеют вид:

,(36)

, (37)

, (38)

. (39)

В таком виде уравнения Максвелла неудобны и их преобразуют.

Уравнения Максвелла легко сводятся к волновым уравнениям, в которые входит только один из векторов поля. Определяя
из (37) и подставляя его в (36), получаем:

раскроем левую часть используя формулу III:

Введём обозначения
,тогда с учётом
, получим:

. (40)

Такое же уравнение можно получить относительно

. (41)

Уравнения (40) – (41) получили название уранений Гельмгольца. Они описывают распространение волн в пространстве и являются доказательством того, что изменение во времени электрического и магнитного полей приводит к распространению электромагнитных волн в пространстве.

Эти уравнения справедливы для любой системы координат. При использовании прямоугольной системы координат будем иметь:

, (42)

, (43)

где
– едичничные векторы

Если подставить соотношение (42) и (43) в уравнения (40) и (41), то последние распадаются на шесть независимых уравнений:

,
,

, (44)
, (45)

,
,

где
.

В общем случае в прямоугольной ситеме координат для нахождения составляющих поля необходимо решить одно линейное дифференциальное уравнение второго порядка

,

где – одна из составляющих поля, т.е.
. Общее решение этого уравнения имеет вид

, (46)

где
– функция распределения поля в плоскости фронта волны не зависящая от.

Энергетические соотношения в электромагнитном поле. Теорема Умова-Пойнтинга

Одной из важнейших характеристик электромагнитного поля является его энергия. Впервые вопрос об энергии электромагнитного поля был рассмотрен Максвеллом, который показал, что полная энергия поля, заключённого внутри объёма , складывается из энергии электрического поля:

, (47)

и энергии магнитного поля:

. (48)

Таким образом, полная энергия электромагнитного поля равна:

. (49)

В 1874г. проф. Н. А. Умов ввел понятие о потоке энергии, а в 1880г. это понятие было применено Пойнтингом к исследованию электромагнитных волн. Процесс излучения в электродинамике принято характеризовать, определяя в каждой точке пространства вектор Умова-Пойнтинга.

Физически правильные результаты, согласующиеся как с законом сохранения энергии, так и с уравнениями Максвелла, получается в том случае, если выразить вектор Умова-Пойнтинга через мгновенные значения
и
следующим образом:

.

Возьмём первое и второе уравнения Максвелла и умножим первое на , а второе на
и сложим:

,

где .

Таким образом, уравнение (50) можно записать в виде

,

интегрируя по объему и меняя знаки, имеем:

Перейдем от интеграла по объему к интегралу по поверхности

,

или с учетом
получим:

, то
,
,

. (51)

Полученное уравнение выражает закон сохранения энергии в электромагнитном поле (теорему Умова-Пойнтинга.). Левая часть уравнения представляет собой скорость изменения во времени полного запаса энергии электромагнитного поля в рассмотренном объеме
. Первый член правой части есть количество тепла, выделяющегося в проводящих частях объёмаза единицу времени. Второе слагаемое представляет поток вектора Умова-Пойнтинга через поверхность, ограничивающую объем.Вектор
есть плотность потока энергии электромагнитного поля.
Т.к.
, то направление вектора
можно определить по правилу векторного произведения /правилу буравчика/ (рис. 9). В системеСИ вектор
имеет размерность
.

Рисунок 9 – К определению вектора Умова-Пойнтинга



Похожие статьи