Система выброса парашюта на самодельной ракете. Узлы профессиональной гидроракеты


Наверняка каждый из нас в детстве хоть раз делал и запускал водяную ракету. Такие самоделки хороши тем, что они быстро собираются и не требуют никакого топлива, например пороха, газа и так далее. В качестве энергии для запуска такой ракеты выступает сжатый воздух, который накачивается обыкновенным насосом. В итоге вода выходит из бутылки под давлением, создавая реактивную тягу.

Рассмотренная ниже ракета состоит из трех бутылок, объем каждой составляет 2 литра, то есть это довольно большая и мощная ракета. Помимо этого в ракете имеется простейшая система спасения, что позволяет ракете плавное приземлиться и не разбиться.

Материалы и инструменты для самоделки:
- пластиковая трубка с резьбой;
- бутылки;
- парашют;
- фанера;
- жестяная банка из под консервов;
- маленький моторчик, шестерни и прочие мелочи (для создания системы спасения);
- источник питания (батарейки или аккумулятор от мобильного).


Инструменты для работы: ножницы, ножовка, клей, саморезы и отвертка.

Приступаем к созданию ракеты:

Шаг первый. Конструкция ракеты
Для создания ракеты было использовано три двухлитровых бутылки. Две бутылки в конструкции соединяются горлышко к горлышку, в качестве переходника для соединения был применен цилиндр, сделанный из пустого пластмассового газового баллончика. Детали садятся на клей.


Что касается второй и третей бутылки, то они крепятся донышко к донышку. Для соединения используется трубка с резьбой и двумя гайками. Места крепления хорошо герметизируются с помощью клея. Еще, чтобы сделать ракету более обтекаемой, на места стыков приклеены куски бутылки. В качестве наконечника используется горлышко пластиковой бутылки. В итоге вся конструкция представляет собой единый гладкий цилиндр.

Шаг второй. Стабилизаторы для ракеты
Чтобы ракета взлетала вертикально, для нее понадобится изготовить стабилизаторы. Автор изготавливает их из фанеры.



Шаг третий. Сопло

Сопло делается немного меньше, чем обычно, когда в качестве него используется просто горлышко бутылки. Для изготовления сопла берется крышка от бутылки и в ней вырезается отверстие. В итоге вода выходит не так быстро.


Шаг четвертый. Пусковая площадка
Для изготовления пусковой площадки понадобится лист ДСП, а также два металлических уголка. Для удерживания ракеты применяется металлическая скобка, она держит ракету за горлышко бутылки. При запуске скоба выдергивается с помощью веревки, при этом горлышко освобождается, образуется напор воды и ракета взлетает.


Шаг пятый. Заключительный этап. Устройство парашюта
Система парашюта очень простая, здесь нет никакой электроники, все делает механика на основе примитивного таймера. На фото можно увидеть, как выглядит парашют, когда он сложен.




Парашютный отсек изготавливается из консервной банки. Когда парашюту нужно раскрыться, специальная пружина вытесняет его через дверку в консервной банке. Эта дверка открывается специальным таймером. На фото модно увидеть, как устроен толкатель с пружиной.

Когда парашют сложен и ракета еще не начала падать, дверка парашютного отсека закрыта. Далее в воздухе срабатывает таймер, открывает дверку, парашют вытесняется наружу и раскрывается потоком воздуха.








Что касается устройства парашютного таймера, то он очень примитивен. Таймер представляет собой небольшой редуктор с валом, иначе говоря, это небольшая лебедка на основе электромотрчика. Когда ракета взлетает, на моторчик сразу поступает питание, и он начинает вращаться, при этом на вал наматывается нитка. Когда нитка будет полностью намотана, она начнет тянуть за защелку на дверце и парашютный отсек откроется. Зубчатые колеса на фото были изготовлены вручную при помощи напильника. Но можно использовать уже готовые от игрушек, часов и так далее.

Вот и все, самоделка готова, на видео можно посмотреть, как все работает. Правда, здесь показан запуск без парашюта.

По мнению автора, самоделка получилась не особо производительной, то есть ракета взлетает примерно на такую же высоту, как и обычная бутылка. Но здесь можно поэкспериментировать, например, поднять давление воздуха в ракете.

Как бы высоко модель ракеты не взлетела, ей предстоит падение и встреча с землей. Если не предпринять мер по снижению скорости соприкосновения с планетой, то потери неизбежны…

Как правило, для замедления снижения используется парашют.

Интерес представляет устройство механизма выброса парашюта. Обычно используется пиротехническая система. В корпусе ракеты создается избыточное давление, приводящее к «разлому» корпуса и высвобождению из него парашюта. Для создания повышенного давления .

Схема системы спасения «пиро 1» изображена на рисунке…

Парашют(12) вместе с обтекателем(11) «выстреливается» из корпуса ракеты(8) с помощью поршня(10). Все подвижные детали удерживаются вместе резинкой(7), которая закреплена в корпусе(8) винтом М5(4). Он же является верхним, удерживающим ракету на пусковой направляющей, устройством.

Мортира(6) (буду использовать термины Rocki) в которую закладывается заряд(5) выполнена из бумажной трубки диаметром 20мм (существенно меньше диаметра корпуса ракеты). Низ мортиры(6) упирается в винт(4). между мортирой и корпусом ракеты — уплотнение из вспененного полиэтилена. Провода(3) питания подводятся к заряду через разъем(9).

Напряжение батареи(1) 6F22(Крона) подается на блок управления(2), где транзисторный ключ коммутирует его на пиропатрон(5).

Пламягаситель выполнен из проволочной мочалки для мытья посуды.

В нужный момент напряжение подается на запал порохового заряда. Происходит «маленький взрыв» внутри мортиры. Избыточное давление газов выталкивает поршень, а тот, в свою очередь — парашют и обтекатель.

Видеозапись теста системы — ниже…

Вроде бы все сработало как надо! Но осмотр внутренностей ракеты показал сильную закопченность,
практически полное выгорание уплотнителя поршня(10),
сильно обожженную резинку(7) амортизатора.
Пламягаситель — не справился с задачей «пламягашения».

Ниже — видео повторного теста системы. Здесь использованы все элементы системы из первого опыта без замены.

Видно что система не сработала. Уплотнение поршня не работает, поэтому все газы нашли выход из ракеты без отстрела обтекателя…

Вывод: система работоспособна, но требует существенного восстановления элементов после срабатывания.

Прежде чем говорить о миниатюрных ракетах, уясним - что же такое модель ракеты, рассмотрим основные требования, предъявляемые к постройке и запуску моделей ракет.

Летающая модель ракеты приводится в движение с помощью ракетного двигателя и поднимается в воздух, не используя аэродинамическую подъёмную силу несущих поверхностей (как самолёт), имеет устройство для безопасного возвращения на землю. Модель изготовляют в основном из бумаги, дерева, разрушаемого пластика и других неметаллических материалов.

Разновидностью моделей ракет являются модели ракетопланов, которые обеспечивают возвращение на землю их планёрной части путём устойчивого планирования с использованием аэродинамических, замедляющих падение сил.

Различают 12 категорий моделей ракет - на высоту и продолжительность полёта, модели-копии и т.д. Из них - восемь чемпионатных (для официальных соревнований). У спортивных моделей ракет ограничивается стартовая масса - она должна быть не более 500 г, у копии - 1000 г, масса топлива в двигателях - не более 125 г и количество ступеней - не более трёх.

Стартовая масса - это масса модели с двигателями, с системой спасения и полезным грузом. Ступенью модели ракеты называется часть корпуса, содержащая в себе один или более ракетных двигателей, спроектированная с учётом её отделения в полёте. Часть модели без двигателя не является ступенью.

Ступенчатость конструкции определяют на момент первого движения от стартового двигателя. Для запуска модели ракет следует применять модельные двигатели (МРД) на твёрдом топливе только промышленного производства. Конструкция должна иметь поверхности или устройства, удерживающие модель на заранее намеченной траектории взлёта.

Нельзя, чтобы модель ракеты освобождалась от двигателя, если он не заключён в ступень. Разрешается сбрасывать корпус двигателя у модели ракетопланов, которые опускаются на парашюте (с куполом площадью не менее 0,04 кв. м) или на ленте размерами не менее 25x300 мм.

На всех ступенях модели и отделяющихся частях необходимо устройство, замедляющее спуск и обеспечивающее безопасность приземления: парашют, ротор, крыло и т.д. Парашют может изготовляться из любых материалов, а для удобства наблюдения иметь яркую окраску.

На модели ракеты, представляемой на соревнования, должны быть опознавательные знаки, состоящие из инициалов конструктора и двух цифр высотой не менее 10 мм. Исключение составляют модели-копии, опознавательные знаки которых соответствуют знакам копируемого прототипа.

Любая летающая модель ракеты (рис. 1) имеет следующие основные части: корпус, стабилизаторы, парашют, направляющие кольца, головной обтекатель и двигатель. Поясним их назначение. Корпус служит для размещения парашюта и двигателя. К нему крепят стабилизаторы и направляющие кольца.

Стабилизаторы нужны для устойчивости модели в полёте, а парашют или любая другая система спасения - для замедления свободного падения. С помощью направляющих колец модель устанавливают на штангу перед стартом. Для придания модели хорошей аэродинамической формы верхняя часть корпуса начинается головным обтекателем (рис. 2).

Двигатель - «сердце» модели ракеты, он создает необходимую тягу для полёта. Для тех, кто желает приобщиться к ракетомоделизму, своими руками изготовить действующую модель летательного аппарата под названием ракета, предлагаем несколько образцов таких изделий.

Надо сказать, что для данной работы понадобятся доступный материал и минимум инструментов. И, конечно, это будет самая простая, одноступенчатая модель под двигатель импульсом 2,5 - 5 н.с.

Исходя из того, что по спортивному кодексу ФАИ и нашим «Правилам проведения соревнований» минимальный диаметр корпуса составляет 40 мм, выбираем соответствующую оправку для корпуса. Для неё подойдет обыкновенный круглый стержень или трубка длиной 400 - 450 мм.

Это могут быть составные элементы (трубки) шланга от пылесоса или отслужившие свой век лампы дневного света. Но в последнем случае нужны особые меры предосторожности - ведь лампы изготовлены из тонкого стекла. Рассмотрим технологию постройки простейших моделей ракет.

Основной материал для изготовления несложных моделей, рекомендуемых начинающим конструкторам, - бумага и пенопласт. Корпуса и направляющие кольца склеивают из чертёжной бумаги, парашют или тормозную ленту вырезают из длинноволокнистой или цветной (креповой) бумаги.

Стабилизаторы, головной обтекатель, обойму под МРД делают из пенопласта. Для склейки желательно применять клей ПВА. Изготовление модели следует начать с корпуса. Для первых моделей лучше делать его цилиндрическим.

Условимся строить модель под двигатель МРД 5-3-3 с наружным диаметром 13 мм (рис. 3). В этом случае для его крепления в кормовой части придется вытачивать обойму длиной 10 - 20 мм. Важными геометрическими параметрами корпуса модели являются диаметр (d) и удлинение (X), которое представляет собой отношение длины корпуса (I) к его диаметру (d): X = I/d.

Удлинение большинства моделей для устойчивого полёта с хвостовым оперением должно быть около 9 - 10 единиц. Исходя из этого, определим размер бумажной заготовки для корпуса. Если возьмём оправку диаметром 40 мм, то ширину заготовки вычислим по формуле длины окружности: В - ud. Полученный результат надо умножить на два, ведь корпус - из двух слоёв бумаги, и добавить 8 - 10 мм на припуск для шва.

Ширина заготовки получилась равной порядка 260 мм. Тем, кто ещё не знаком с геометрией, ребятам второго-третьего классов, можно рекомендовать другой простой способ. Взять оправку, обмотать её два раза ниткой или полоской бумаги, прибавить 8 - 10 мм и узнать, какой будет ширина заготовки для корпуса. Следует иметь в виду, что бумагу необходимо располагать волокнами вдоль оправки.

В этом случае она хорошо скручивается, без изломов. Длину заготовки вычислим по формуле: L = Trd или остановимся на размере 380 -400 мм. Теперь о склейке. Обмотав бумажку-заготовку вокруг оправки один раз, оставшуюся часть бумаги промазываем клеем, даём ему немножко подсохнуть и обматываем второй раз.

Загладив шов, помещаем оправку с корпусом у источника тепла, например, у батареи отопления, после просушки зачищаем шов мелкой наждачной бумагой. Аналогичным способом изготавливаем и направляющие кольца. Берём обычный круглый карандаш и наматываем на него полоску бумаги шириной 30 - 40 мм в четыре слоя.

Получаем трубочку, которую после высыхания разрезаем на кольца шириной 10 - 12 мм. Впоследствии клеим их к корпусу. Они являются направляющими кольцами для старта модели. Форма стабилизаторов может быть различна (рис. 4). Их главное предназначение - обеспечение устойчивости модели в полёте.

Предпочтение можно отдать той, при которой часть площади находится за срезом кормовой (нижней) части корпуса. Выбрав нужную форму стабилизаторов, делаем его шаблон из плотной бумаги. По шаблону вырезаем стабилизаторы из пластины пенопласта толщиной 4 - 5 мм (можно с успехом применять потолочный пенопласт). Наименьшее число стабилизаторов - 3.

Сложив стопкой, друг на друга в пакет, скалываем их двумя булавками и, зажав пальцами одной руки, обрабатываем по краям напильником или бруском с наклеенной наждачной бумагой. Потом закругляем или заостряем все стороны стабилизаторов (предварительно разобрав пакет), кроме той, которой они будут крепиться к корпусу.

Далее - клеим стабилизаторы на ПВА в донной части корпуса и покрываем боковые стороны клеем ПВА - он сглаживает поры пенопласта. Головной обтекатель вытачиваем из пенопласта (лучше марки ПС-4-40) на токарном станке. Если такой возможности нет, его можно вырезать также из куска пенопласта и обработать напильником или наждачной бумагой.

Аналогично изготавливаем обойму под МРД и вклеиваем его в донную часть корпуса. В качестве системы спасения модели, обеспечивающей её безопасное приземление, применяем парашют или тормозную ленту. Купол вырезаем из бумаги или тонкого шёлка.

Для первых стартов диаметр купола следует выбирать порядка 350 - 400 мм, - этим самым ограничить время полёта - ведь хочется сохранить свою первую модель на память. После крепления строп к куполу производим укладку парашюта (рис. 6). После изготовления всех деталей модели проводим её сборку.

Головной обтекатель соединяем резиновой нитью (амортизатором) с верхней частью корпуса модели ракет. Концы строп купола парашюта связываем в один жгут и крепим его к середине амортизатора. Далее красим модели в яркие контрастные цвета. Стартовая масса готовой модели с двигателем МРД 5-3-3 около 45 - 50 г.

Подобными моделями можно проводить первые соревнования на продолжительность полёта. Если место для запусков ограничено, рекомендуем выбрать в качестве системы спасения тормозную ленту размерами 100x10 мм. Старты получаются зрелищными и динамичными.

Ведь время полёта при этом будет порядка 30 с, да и доставка моделей гарантирована, что очень важно для самих «ракетчиков». Модель ракеты для показательных полётов (рис. 7) рассчитана на старт с более мощным двигателем с общим импульсом 20 н.с. Она может нести на своём борту и полезный груз - листовки, вымпелы.

Полёт такой модели сам по себе эффектный: старт напоминает пуск настоящей ракеты, а выброс листовок или разноцветных вымпелов добавляет зрелищности. Корпус клеим из плотной чертёжной бумаги в два слоя на оправке диаметром 50 -55 мм, длина его 740 мм.

Стабилизаторы (их четыре) вырезаем из пластины пенопласта толщиной 6 мм. После закругления трёх сторон (кроме самой длинной - 110-мм) их боковые поверхности покрываем двумя слоями клея ПВА. Затем на длинной их стороне, которую потом крепим к корпусу, делаем желобок круглым напильником - для плотного прилегания стабилизаторов к круглой поверхности.

Направляющую трубку выклеиваем известным нам способом на круглой оправке (карандаше), разрезаем на кольца шириной 8 - 10 мм и крепим на ПВА к корпусу. Головной обтекатель вытачиваем на токарном станке из пенопласта. Из него же делаем и обойму под МРД шириной 20 мм и вклеиваем его в донную часть корпуса.

Наружную поверхность головного обтекателя два-три раза обмазываем клеем ПВА - для удаления шероховатости. Соединяем с верхней частью корпуса резинкой-амортизатором, для которого годится обыкновенная бельевая резинка шириной 4 - 6 мм. Купол парашюта диаметром 600 - 800 мм вырезаем из тонкого шёлка, число строп - 12-16.

Свободные концы этих нитей соединяем узлом в один жгут и крепим к середине амортизатора. Внутрь корпуса на расстоянии 250 - 300 мм от нижнего среза бумаги вклеиваем решётку из плотной бумаги или реек, которая не позволяет парашюту и полезному грузу опускаться в момент взлёта в низ модели, нарушая этим её центровку. Наполнение полезного груза целиком зависит от фантазии конструктора модели. Стартовая масса модели - около 250 - 280 г.

ПУСКОВОЕ УСТРОЙСТВО МОДЕЛИ РАКЕТЫ

Для безопасного запуска и полёта модели необходимо надёжное стартовое оборудование. Оно состоит из пускового устройства, пульта дистанционного управления запуском, проводников для подачи электропитания и воспламенителя.

Пусковое устройство должно обеспечивать движение модели вверх до тех пор, пока не будет достигнута скорость, необходимая для безопасного полёта по намеченной траектории. Механические приспособления, встроенные в пусковую установку и помогающие при старте, применять запрещается Правилами соревнований по моделям ракет спортивного Кодекса.

Самое простое пусковое устройство - направляющая штанга (штырь) диаметром 5 - 7 мм, которая закрепляется в стартовой плите. Угол наклона штанги к горизонту не должен быть менее 60 градусов. Пусковое устройство задаёт модели ракеты определённое направление полёта и обеспечивает ей достаточную устойчивость в момент схода с направляющего штыря.

При этом следует учесть, что чем больше длина модели, тем больше должна быть и его длина. Правила предусматривают минимальное расстояние от верхней макушки модели до окончания штанги в один метр. Пульт управления запуском представляет собой обыкновенную коробку размерами 80x90x180 мм, изготовить её можно самостоятельно из фанеры толщиной 2,5 - 3 мм.

На верхней панели (её лучше сделать съёмной) устанавливают сигнальную лампочку, блокировочный ключ и кнопку пуска. На ней можно смонтировать вольтметр или амперметр. Электрическая схема пульта управления запуском изображена на рисунке 7. В качестве источника тока в пульте управления применяют аккумуляторы или другие элементы питания.

В нашем кружке многие годы используют для этой цели четыре сухих элемента типа КБС напряжением 4,5 V, соединив их параллельно в две батареи, которые, в свою очередь, соединяют между собой последовательно. Такого питания хватает для запуска модели ракет в течение всего спортивного сезона.

Это около 250 - 300 пусков. Для подачи электропитания от пульта управления к воспламенителю желательно применять медные многожильные провода диаметром не менее 0,5 мм с влагостойкой изоляцией. Для надёжного и быстрого соединения на концах проводов устанавливают штепсельные разъёмы. В местах соединения воспламенителя крепят «крокодилы».

Длина токоподводящих проводов должна быть свыше 5 м. Воспламенитель (электрозапал) двигателей моделей ракет - это спираль из 1 - 2 витков или отрезок проволоки диаметром 0,2 - 0,3 мм длиной 20 - 25 мм. Материалом для воспламенителя служит нихромовая проволока, обладающая большим сопротивлением. Электрозапал вставляют непосредственно в сопло МРД.

При подаче тока на спираль (электрозапал) выделяется большое количество тепла, так необходимого для воспламенения топлива двигателя. Иногда, для усиления начального теплового импульса, спираль покрывают пороховой мякотью, предварительно обмакнув её в нитролак.

При запуске моделей ракет необходимо строго соблюдать меры безопасности. Вот некоторые из них. Старт моделей производится только дистанционно, пульт управления запуском размещается на расстоянии не менее 5 м от модели.

Для предотвращения непроизвольного воспламенения МРД блокировочный ключ пульта управления должен находиться у ответственного за старт. Только с его разрешения по команде «Ключ на старт!» делается трёхсекундный предстартовый отсчёт в обратном порядке, оканчивающийся командой «Пуск!».

Рис. 1. Модель ракеты: 1 -головной обтекатель; 2 - амортизатор; 3 - корпус; 4 - нить подвески парашюта; 5 - парашют; 6 - направляющие кольца; 7-стабилизатор; 8 - МРД


Рис. 2. Формы корпусов моделей ракет

Рис. 3. Простейшая модель ракеты: 1 -головной обтекатель; 2 - петля крепления системы спасения; 3-корпус; 4-система спасения (тормозная лента); 5 - пыж; 6 - МРД; 7-обойма; 8 - стабилизатор; 9 - направляющие кольца


Рис. 4. Варианты хвостового оперения: при виде сверху (I) и сбоку (II)

Рис. 5. Приклейка строп: 1 - купол; 2-стропы; 3 - накладка (бумага или липкая лента) Купол

Рис. 6. Укладка парашюта

Рис. 7. Модель ракеты для показательных запусков: 1-головной обтекатель; 2 - петля подвески системы спасения; 3 - парашют; 4 - корпус; 5-стабилизатор; 6-обойма под ПРД; 7 - направляющее кольцо


Рис. 8. Электрическая система пульта управления запуском

Т.е. чтобы разглядеть открытие парашюта, надо очень постараться. Но все равно полет красивый.

Когда писалась статья о проекте РК-1, проект РК-2 был только в самом зародыше. Но уже тогда, я высказал мнение, что система спасения - самая сложная в ракете, не несущей других полезных грузов. Как в воду глядел. Больше всего времени потрачено именно на отработку этой системы. Была, правда, допущена и тактическая ошибка. Для таких тонких и ответственных систем надо, конечно, проводить сначала серию наземных тестовых испытаний, прежде чем проводить полеты. Именно после такой серии стендовых испытаний и был осуществлен успешный запуск.

Однако хватит воды. Расскажу о том, что получилось, и в чем уверен. Схема системы спасения ракеты РК-2-1 представлена на Рис.1. Она получилась простой и надежной. Давайте по порядку. Позиции элементов на схеме буду указывать цифрами в скобках. Например, фюзеляж (1).

Крепление
Напомню, что система крепится к поперечно вкрученному в фюзеляж (1) винту М5 (3). Снизу в этот силовой винт упирается двигатель своей мортиркой (2). Двигатель имеет оригинальную систему уплотнения, которая предотвращает прорыв газов от вышибного заряда между корпусом движка и фюзеляжем ракеты. См. статью Двигатель . Тонкостенный пластиковый фюзеляж должен быть в обязательном порядке изолирован изнутри двумя-тремя слоями офисной бумаги проклеенной силикатным клеем или эпоксидкой, по крайней мере в области мортирки и пламегасителя.
К силовому винту крепится пламегаситель (4). Этот простой элемент - гордость моей схемы. Я не встречал чего-то подобного, поэтому буду считать его своей разработкой /27.11.2007 kia-soft/. С появлением пламегасителя работа системы спасения сразу пошла на лад. Конструкция его элементарна. На ось из 2-х миллиметровой стальной проволоки надевается кусок, отодранный от металлической мочалки для чистки сковородок. С двух сторон он поджимается шайбами, сделанными из однокопеечных монет. При внутреннем диаметре фюзеляжа 25 мм, диаметр шайб - 15мм.
Проволока загибается с каждой стороны в виде металлического уха. Одним ухом крепится к силовому винту, а ко второму уху крепится гибкий трос (5). Длина рабочей части 30-40мм. Значение пламегасителя в пиротехнической системе спасения трудно переоценить. Как следует из самого названия, изначально планировалось погасить факел вышибного заряда. Но результат превзошел все ожидания. Элемент не только погасил факел, но и предотвратил выброс несгоревших порошинок к парашюту, и сыграл еще роль радиатора, заметно снизив тепловую нагрузку на остальные элементы. Плюс ко всему пламегаситель выполняет функцию фильтра, практически устраняя образование налета несгоревших частиц на внутренней рабочей поверхности. После трех срабатываний системы была проведена ревизия: вся гарь осела в пламегасителе, все элементы системы остались чистыми и неповрежденными, даже тросик в месте крепления к пламегасителю.
Трос

Изначально у меня была мысль использовать металлический трос в качестве соединения системы с силовым винтом. Однако практика показала полную бесперспективность идеи. Единственное достоинство металлического троса - его термостойкость. В остальном он проигрывает синтетике, как в прочности, так и в пластичности. Применение пламегасителя позволило отказаться от металлического соединительного троса. В рабочей схеме я использовал плетеную ленту, шириной ~10мм, по-видимому, из тонкого стекловолокна. Я говорю, "по-видимому", поскольку затрудняюсь точно назвать состав, из которого выполнена лента. Она оказалась у меня случайно. Знаю только, что прочность ее не менее, если не более, чем у капроновой, такая же гибкость, легкость и довольно высокая термостойкость. Я пытался оплавить зажигалкой, но все чего я добился - небольшое обугливание, не приведшее к серьезной потере прочности. Но на всякий случай, трос я сделал из двойной ленты. Могу только приложить фотку, может поймете о чем идет речь. Если такого троса у вас нет, то думаю вполне можно применить обычный капроновый. Возможно только придется увеличить рабочее тело пламегасителя. Тут надо будет поэкспериментировать.

Одним концом трос (5) соединен с пламегасителем (4). Другим - со следующим элементом системы - поршнем (6). Длина троса должна быть такой, чтобы поршень выходил за пределы фюзеляжа на 10-15см.


Поршень (6) под давлением газов вышибного заряда выходит из фюзеляжа и выталкивает парашют. Он выточен из деревянной пробки от шампанского. Подгонка под диаметр фюзеляжа должна быть довольно точной. Поршень должен свободно ходить внутри фюзеляжа, но при этом не иметь больших зазоров со стенками. Уплотнительным элементом служит шайба из войлока толщиной 4-5мм. По аналогии с пламегасителем поршень с прокладкой одевается на ось из стальной проволоки диаметром 2мм. С двух сторон конструкция также поджимается копеечными шайбами. Ось с обоих сторон загибается на крепежные ушки. Поршень в сборе должен перемещаться с небольшим трением. В качестве проверки можно вставить поршень в фюзеляж и дунуть с нижнего торца. При этом на выталкивание поршня не должно требоваться больших усилий.

Если ракета легкая и в полете не имеет сильной осевой закрутки то вертлюг можно не применять. В данной системе он не использовался.


К верхнему уху поршня крепится центральный строп парашюта. На расстоянии ~15см от места крепления организуем амортизатор (7). Это расстояние, на самом деле зависит от конкретной ракеты. Лучше всего его выбрать таким образом, чтобы при полностью утопленном поршне сам амортизатор оказался у верхнего среза фюзеляжа, но еще не был утоплен. Задача амортизатора смягчить ударные нагрузки при раскрытии парашюта. Он делается из любой прочной кольцевой резинки, например, вырезанной из велокамеры. Резинка привязывается в двух местах к стропу на расстоянии длины резинки в вытянутом состоянии. Получается такая петля, растягивающая резинку при натяжении. В эту петлю на центральный строп можно закрепить обтекатель (8). Для этого в обтекателе с нижней стороны я высверливаю канал диаметром 10мм и глубиной 20-25мм. На расстоянии 10мм от нижнего среза обтекателя вкручиваю винт М3, за который и цепляю обтекатель к системе.
Парашют ПРСК-1

Венец системы спасения - парашют (9). Да, можно сделать купол из пакета для мусора, как я писал в одной из ранних редакций статьи. Но зимние суровые условия полетов все расставили по своим местам. Короче, если хотите сделать безотказную систему спасения, делайте парашют из легкой синтетической ткани. Лучшая ткань для этого конечно легкий капрон от самолетного тормозного парашюта. В свое время мне удалось раздобыть пару метров. Парашюты получаются из него шикарные. Если нет такого, подойдет любая легкая синтетическая ткань. Но даже в случае тканевого парашюта, не рекомендую держать его в упакованном виде при хранеии. Снаряжать систему надо только непосредственно перед полетом.

Лень - двигатель прогресса. Природная лень и отсутствие хорошей швейной машинки заставили меня придумать технологию изготовления тканевого парашюта без шитья. По этой технологии парашют диаметром до 80см, т.е. для небольшой ракеты весом до 700г, делается даже легче, чем из пластикового пакета. Зная вес своей ракеты, вы можете прикинуть в моей программе amo-1 размер парашюта, требуемый для нужной скорости снижения. На "ФЕНИКСЕ", вес которого не превышал 200г был успешно применен плоский шестигранный парашют диаметром всего 46см. По ходу замечу, что гнаться за большими куполами не только не обязательно, но и может выйти боком. Однажды мне уже пришлось отмотать 2км по пересеченке за снесенной ветром ракетой.

Для начала делаем шестигранную, а начиная с диаметра 60см лучше восьмигранную, выкройку из газеты. По выкройке разогретым паяльником вырезаем купол. Стропы делаем из капроновых веревок толщиной где-то около 1мм. Длина строп приблизительно в 2-3 раза больше диаметра купола, плюс запасик на организацию центрального стропа, амортизатора, петли крепления к поршню.


Теперь крепим стропы к куполу. Вот тут-то самая фишка. Никакого шитья. Делаем на стропе простой узел-удавочку и накидываем на сложенный в два раза уголок купола и хорошо так затягиваем на расстоянии 10 мм от вершины угла.


Слегка обрезав лишний конец узелка и уголка, оплавляем их зажигалкой до образования аккуратных круглых галтелей. Оплавляем так, чтобы галтели плотно прилегали к узлу. Все, строп присоединен. Таким же образом крепим все стропы. И затем с небольшим усилием расправляем купол в месте крепления каждой стропы. Один нюанс - сложение всех уголков купола надо делать в одном направлении (вниз). Тогда после закрепления строп, купол будет не плоским, а приобретет некоторый объем, что увеличивает эффективность парашюта.

Если кто-то думает, что такое соединение строп и купола не прочное, тот глубоко заблуждается. В этом я убедился, когда в одном аварийном полете парашют открылся на взлете. Скорость была очень приличная, но ракета быстро затормозила, а для ремонта окзалось достаточным закрепить одну оторвавшуюся стропу.

Собственно, парашют готов, осталось соединить стропы вместе, организовать амортизатор, и прикрепить к поршню.

С момента написания этой статьи прошло немало времени. Парашюты, выполненные по данной авторской технологии, были установлены на все мои ракеты, а это, на данный момент, порядка десятка. Им пришлось поработать в очень разных условиях, в том числе и аварийных и околоаварийных при запредельных нагрузках. Все ипытания они с честью выдержали и в случае срабатывания системы спасения все ракеты были спасены. Многие ракетчики повторили мою конструкцию и остались довольны результатом. Поэтому могу смело рекомендовать этот несложный в исполнении, но очень надежный парашют, к использованию. Совершенно заслуженно присваиваю ему персональное наименование ПРСК-1, или Парашют Ракетный Спасательный К...-1 (К - от автора).

Сборка

Подготовка системы спасения практически завершена. Осталось упаковать все в фюзеляж. Сначала утапливаем трос и поршень. Затем складываем парашют. Для этого расправляем все складки купола как на складном зонтике и укладываем их в одну сторону в стопку. Далее складываем один раз в поперечном направлении и скатываем в "колбаску" начиная с вершины. "Колбаску" обматываем жгутом из строп. Этот способ сложения парашюта не совсем "правильный", но вполне работоспособный. Его преимущество - плотная скрутка парашюта, что очень полезно при недостаточном объеме фюзеляжа. Таким способом мне удалось без проблем оснастить парашютом ракету РК-2-3 "ВИКИНГ", внутренний диаметр фюзеляжа которой всего 20мм. Парашют диаметром 46см был выполнен даже из более толстой ткани - каландра.

Если размеры ракеты не ограничивают, можно применить "правильный" способ. Он основан на стандартной методике сложения запасных спасательных парашютов. Так же складываем купол, как складной зонтик, расправляя складки. Распределяем складки на две равные стопки рис.2. Накладываем одну стопку на другую, сложив конструкцию вдоль оси рис.3.

Далее есть два варианта. Если ширина полученой двойной пачки слишком большая, то верхнюю и нижнюю половины еще раз складываем пополам в обратную сторону наружу, т.е. верхнюю - вверх, нижнюю - вниз, рис.4 . Если небольшая, сразу переходим к следующему этапу - сложению Z-образными мелкими складками в поперечном направлении, начиная с вершины, рис.5. Получается компактная стопочка (см.фото в начале раздела), которую обматываем стропами и упаковываем в фюзеляж.

Для подстраховки можно защитить парашют дополнительно полоской туалетной бумаги. Берется полоска туалетной бумаги в два раза длиннее, чем парашютная "колбаска". Полоску складываем пополам, в сгиб упираем торец скрутки и обминаем бумагу вокруг него. Просто намотать бумагу нельзя, она будет препятствовать раскрытию, а в таком виде она моментально срывается набегающим потоком. Последнее время я этого не делаю, поскольку при наличии хорошего пламегасителя, необходимости в этом нет.

Наконец заправляем в фюзеляж амортизатор и устанавливаем обтекатель. Все, система готова к работе. Хорошо собранная система срабатывает, если просто не очень сильно дунуть с нижней стороны фюзеляжа.

В качестве резюме напомню некоторые нюансы. Система успешно испытана на ракете РК-2-1 "ФЕНИКС", весом ~200г, внутренний диаметр 25мм, потолком 400м. Рабочий объем камеры системы спасения ~145куб.см. Для такого объема необходимая навеска вышибного заряда составляет 0,5г "малинового пороха" или охотничьего пороха "Сокол".

Точную навеску для каждой конкретной ракеты надо определять путем проведения серии наземных стендовых испытаний. Т.е. берете готовую ракету, устанавливаете двигатель без топлива, но с вышибным зарядом и инициируете заряд. И так до тех пор, пока все не будет нормально работать, как на этой видеозаписи стендового испытания. После этого можно лететь.

Не забудьте защитить изнутри пластиковый корпус ракеты вставкой бумажной трубки, по-крайней мере в районе мортирки и пламегасителя. Это нужно, если корпус ракеты сделан из тонкостенной пластиковой трубки (1мм для ФЕНИКСа). Эксперименты с довольно толстостенной полипропиленовой трубкой (2,5мм для ВИКИНГа) показали, что при наличии пламегасителя такую защиту ставить не надо.

Помните, что для нормальной работы необходимо уплотнение при установке двигателя.

Понятно, что систему можно применять для ракет практически любого размера, но при этом надо вносить определенные коррективы.

Многие ракетчики применяют различные механические системы выброса парашюта. В основном это делается с целью избежания тепловых повреждений элементов системы. В остальном механические системы, на мой взгляд, проигрывают пиротехническим. В разработанной мною системе спасения ракеты удалось радикально решить проблему тепловых перегрузок, и в результате получена легкая и надежная конструкция.
/27.11.2007 kia-soft/

P.S.
Содержание может корректироваться по мере накопления экспериментальных данных.

P.P.S.
Последняя серьезная корректировка проведена 12.02.2008г. Корректировкой это назвать трудно, поскольку от старой редакции почти ничего не осталось. Это связано с тем, что конструкция системы спасения радикально переработана, испытана и проверена на практике. Вся беллетристика выкинута и сделано подробное описание рабочей системы спасения для ракеты РК-2-1 "ФЕНИКС".
На этом успешно завершена разработка проекта РК-2. Все задачи, которые ставились в рамках проекта решены. Пора переходить к новому проекту РК-3 ...
***

Это мозгоруководство о том, как построит ь и запустить гидроракету, да не просто, а профессионально, на основе моего многолетнего опыта.

Я не несу ответственности за любой ущерб, за все риски связанные с производством и запуском этой гидроракеты, ответственность вы берете на себя!

Веселого строительства и запуска аэросамоделки !

Шаг 1: Начинаем

Гидроракета приводится в движение с помощью давления сжатого воздуха, переданного в воду, тем самым создавая направленный гидроудар.

Если вы возьмете 1 стандартную двухлитровую пластиковую бутылку, то под давлением 120 пси ракета достигнет высоты около 30 метров. Но, если вы возьмете 2 двухлитровые бутылки, то под давлением 120 пси гидроракета поднимется примерно на 45 метров, так как воздуха в ракете будет больше, следовательно, и тяга больше. Вторая бутылка дает только 15 дополнительных метров потому, что масса самоделки увеличивается.

Шаг 2: Носовой конус

Отрезаем от одной бутылки верхнюю часть, а потом отрезаем от нее горлышко. Берем мяч для пин-понга и половиним его, сажаем половинку мяча на клей с внутренней части отрезанной вершины бутылки. Полученные две детали соединяем клеем или скотчем.

Добавление габаритного носового конуса смещает центр тяжести выше, следовательно, делает траекторию полета поделки более стабильной.

Шаг 3: Стабилизаторы

На мозгокомпьютере чертим шаблоны стабилизаторов, распечатываем их и вырезаем по форме. Затем приклеиваем шаблоны на картон, то есть придаем стабилизаторам нужную жесткость и вырезаем по контуру. Вместо картона можно использовать рифленый пластик.

Стабилизаторы монтируем на тело ракеты с помощью клея и скотча.

Шаг 4: Соединение

Бутылки ступеней могут соединяться днищами. Для этого в середине днищ бутылок сверлятся отверстия диаметром 7-8мм, в эти отверстия изнутри вставляются и герметизируются «папы» 8мм-х сантехнических муфт и соединяются бутылки с двумя «папами» посредством одно «мамы» муфты.

Другое соединение бутылок – крышками. В серединах крышек бутылок так же сверлятся отверстия диаметром 7-8мм, верх одной крышки прикладывается к верху другой крышки, просверленные отверстия в крышках центрируются, и соединяются 8мм-ой сантехнической муфтой. Далее в крышки навинчиваются бутылки гидроракеты .

Шаг 5: Сращивание

Для объединения двух бутылок вместе, как на рисунке, чтобы создать герметичное уплотнение, необходимо три бутылки.

Сначала отрезаются нижние концы двух одинаковых по размеру бутылок. Далее от третьей бутылки отрезаются верх и низ, и полученное кольцо вставляется наполовину в отрезанные края двух бутылок. Соединение герметизируем и укрепляем скотчем.

Шаг 6: Пусковой механизм

В качестве пускового механизма я применяю конструкцию, разработанную в НАСА. Этот механизм позволяет варьировать размер сопла ракеты, то есть выбрать оптимальное пусковое давление в системе.

Доска толщиной 1.5см
2 болта 10мм
сверло по металлу диаметром 10мм
сверло по дереву диаметром 10мм
по 6 гаек и шайб диаметром 10мм
велосипедный клапан (можете взять от старой велокамеры)
резиновая пробка
велосипедный насос
2 колышка для палатки
4 скобки L-формы
гвозди

Пусковая установка может выдерживать любое давление, в зависимости от резиновой пробки. Для этого соединение пробки и горлышка ракеты настраивается регулировочными болтами.

Шаг 7: Двухступенчатая ракета

Для двухступенчатых гидроракет может применяться конструкция с сервоприводом или клапаном давления.

15см трубки диаметром 22мм
фанера или пластиковая панель (как основа для всей конструкции)
встроенный невозвратный клапан (годится клапан от насоса)
первая и вторая ступени гидроракеты

Вставляем 2 см трубы 22мм в первую ступень. Используем эпоксидные или ПВХ мастики, чтобы запечатать вставленную трубку. Вставляем обратный клапан в 22мм трубу и приклеиваем его.
Из пластика вырезаем элементы дополнительного крепления для удержания бутылки в нужном нам положении.

Шарнир крепим на хомут. Когда вы наденьте бутылку (используйте вазелин для герметичности) убедитесь, что зажим на трубке прямо возле горлышка первой ступени. Затем зажмите ваш шарнир на горлышке бутылки так, чтоб было герметично и устойчиво.

Шаг 8: Тройные ракетоносители

Ракетоносители легко сделать, потому что они просто держатся на выталкивающей бутылке.

Размечаем места крепления ракетоносителей на основной ступени. Конструируем три ракетоносителя с одним стабилизатором и крепим их на размеченные места. Собираем пусковой механизм для тройных ракетоносителей и испытываем ракету!

Шаг 9: Парашют

Парашютная система сконструирована по методу простого гравитационного развертывания.

Парашютный конус установлен на ракете слабо, поэтому, когда ракета достигает максимальной высоты, утяжеленный носовой конус первым начнет падать на землю, и развернет парашютную систему.

Делаем конус для парашютного отсека и примеряем его к носовому отсеку, он должен достаточно слабо сидеть на носовом отсеке. Сверлим отверстие в носовом отсеке и парашютном конусе под шнур парашютной системы, продеваем и завязываем этот вытяжной шнур.

Крепим стропы парашюта к вытяжному шнуру, так чтобы при срабатывании системы парашют исправно функционировал и парашютный конус не терялся.

Шаг 10: Грузовой отсек

Грузовой отсек используется для перевозки полезного груза, такого как датчик высоты, акселерометр, или даже ручного слизня, но падение с высоты может убить его.

Отрезаем низ любого размера от бутылки. Из гофрированного пластика вырезаем два диска диаметра бутылки. Из этого же пластика вырезаем полоску шириной диаметра бутылки и длиной чуть меньше грузового отсека. Склеиваем детали, а когда высохнет клей, помещаем в грузовой отсек и заполняем полезным грузом.

Шаг 11: Собираем, запускаем

Теперь, когда вы знаете, как делать все основные узлы гидроракеты, можете приступать к созданию своей собственной самоделки !



Похожие статьи