Что называется механическим движением в физике. Механическое движение - реферат

Темы кодификатора ЕГЭ: механическое движение и его виды, относительность механического движения, скорость, ускорение.

Понятие движения является чрезвычайно общим и охватывает самый широкий круг явлений. В физике изучают различные виды движения. Простейшим из них является механическое движение. Оно изучается в механике.
Механическое движение - это изменение положение тела (или его частей) в пространстве относительно других тел с течением времени.

Если тело A меняет своё положение относительно тела B, то и тело B меняет своё положение относительно тела A. Иначе говоря, если тело A движется относительно тела B, то и тело B движется относительно тела A. Механическое движение является относительным - для описания движения необходимо указать, относительно какого тела оно рассматривается.

Так, например, можно говорить о движении поезда относительно земли, пассажира относительно поезда, мухи относительно пассажира и т. д. Понятия абсолютного движения и абсолютного покоя не имеют смысла: пассажир, покоящийся относительно поезда, будет двигаться с ним относительно столба на дороге, совершать вместе с Землёй суточное вращение и двигаться вокруг Солнца.
Тело, относительно которого рассматривается движение, называется телом отсчёта .

Основной задачей механики является определение положения движущегося тела в любой момент времени. Для решения этой задачи удобно представить движение тела как изменение координат его точек с течением времени. Чтобы измерить координаты, нужна система координат. Чтобы измерять время, нужны часы. Всё это вместе образует систему отсчёта.

Система отсчёта - это тело отсчёта вместе с жёстко связанной с ним («вмороженной»» в него) системой координат и часами.
Система отсчёта показана на рис. 1. Движение точки рассматривается в системе координат . Начало координат является телом отсчёта.

Рисунок 1.

Вектор называется радиус-вектором точки . Координаты точки являются в то же время координатами её радиус-вектора .
Решение основной задачи механики для точки состоит в нахождении её координат как функций времени: .
В ряде случаев можно отвлечься от формы и размеров изучаемого объекта и рассматривать его просто как движущуюся точку.

Материальная точка - это тело, размерами которого можно пренебречь в условиях данной задачи.
Так, поезд можно считать материальной точкой при его движении из Москвы в Саратов, но не при посадке в него пассажиров. Землю можно считать материальной точкой при описании её движения вокруг Солнца, но не её суточного вращения вокруг собственной оси.

К характеристикам механического движения относятся траектория, путь, перемещение, скoрость и ускорение.

Траектория, путь, перемещение.

В дальнейшем, говоря о движущемся (или покоящемся) теле, мы всегда полагаем, что тело можно принять за материальную точку. Случаи, когда идеализацией материальной точки пользоваться нельзя, будут специально оговариваться.

Траектория - это линия, вдоль которой движется тело. На рис. 1 траекторией точки является синяя дуга, которую описывает в пространстве конец радиус-вектора .
Путь - это длина участка траектории, пройденного телом за данный промежуток времени.
Перемещение - это вектор, соединяющий начальное и конечное положение тела.
Предположим, что тело начало движение в точке и закончило движение в точке (рис. 2). Тогда путь, пройденный телом, это длина траектории . Перемещение тела - это вектор .

Рисунок 2.

Скорость и ускорение.

Рассмотрим движение тела в прямоугольной системе координат с базисом (рис. 3).


Рисунок 3.

Пусть в момент времени тело находилось в точке с радиус-вектором

Спустя малый промежуток времени тело оказалось в точке с
радиус-вектором

Перемещение тела:

(1)

Мгновенная скорость в момент времени - это предел отношения перемещения к интервалу времени , когда величина этого интервала стремится к нулю; иными словами, скорость точки - это производная её радиус-вектора:

Из (2) и (1) получаем:

Коэффициенты при базисных векторах в пределе дают производные:

(Производная по времени традиционно обозначается точкой над буквой.) Итак,

Мы видим, что проекции вектора скорости на координатные оси являются производными координат точки:

Когда стремится к нулю, точка приближается к точке и вектор перемещения разворачивается в направлении касательной. Оказывается, что в пределе вектор направлен точно по касательной к траектории в точке . Это и показано на рис. 3.

Понятие ускорения вводится похожит образом. Пусть в момент времени скорость тела равна , а спустя малый интервал скорость стала равна .
Ускорение - это предел отношения изменения скорости к интервалу , когда этот интервал стремится к нулю; иначе говоря, ускорение - это производная скорости:

Ускорение, таким образом, есть "cкорость изменения скорости". Имеем:

Следовательно, проекции ускорения являются производными проекций скорости (и, стало быть, вторыми производными координат):

Закон сложения скоростей.

Пусть имеются две системы отсчёта. Одна из них связана с неподвижным телом отсчёта . Эту систему отсчёта обозначим и будем называть неподвижной .
Вторая система отсчёта, обозначаемая , связана с телом отсчёта , которое движется относительно тела со скоростью . Эту систему отсчёта называем движущейся . Дополнительно предполагаем, что координатные оси системы перемещаются параллельно самим себе (нет вращения системы координат), так что вектор можно считать скоростью движущейся системы относительно неподвижной.

Неподвижная система отсчёта обычно связана с землёй. Если поезд плавно едет по рельсам со скоростью , это система отсчёта, связанная с вагоном поезда, будет движущейся системой отсчёта .

Заметим, что скорость любой точки вагона (кроме вращающихся колёс!) равна . Если муха неподвижно сидит в некоторой точке вагона, то относительно земли муха движется со скоростью . Муха переносится вагоном, и потому скорость движущейся системы относительно неподвижной называется переносной скоростью .

Предположим теперь, что муха поползла по вагону. Скорость мухи относительно вагона (то есть в движущейся системе ) обозначается и называется относительной скоростью . Скорость мухи относительно земли (то есть в неподвижной системе ) обозначается и называется абсолютной скоростью .

Выясним, как связаны друг с другом эти три скорости - абсолютная, относительная и переносная.
На рис. 4 муха обозначена точкой .Далее:
- радиус-вектор точки в неподвижной системе ;
- радиус-вектор точки в движущейся системе ;
- радиус-вектор тела отсчёта в неподвижной системе .


Рисунок 4.

Как видно из рисунка,

Дифференцируя это равенство, получим:

(3)

(производная суммы равна сумме производных не только для случая скалярных функций, но и для векторов тоже).
Производная есть скорость точки в системе , то есть абсолютная скорость:

Аналогично, производная есть скорость точки в системе , то есть относительная скорость:

А что такое ? Это скорость точки в неподвижной системе, то есть - переносная скорость движущейся системы относительно неподвижной:

В результате из (3) получаем:

Закон сложения скоростей . Скорость точки относительно неподвижной системы отсчёта равна векторной сумме скорости движущейся системы и скорости точки относительно движущейся системы. Иными словами, абсолютная скорость есть сумма переносной и относительной скоростей.

Таким образом, если муха ползёт по движущемуся вагону, то скорость мухи относительно земли равна векторной сумме скорости вагона и скорости мухи относительно вагона. Интуитивно очевидный результат!

Виды механического движения.

Простейшими видами механического движения материальной точки являются равномерное и прямолинейное движения.
Движение называется равномерным , если модуль вектора скорости остаётся постоянным (направление скорости при этом может меняться).

Движение называется прямолинейным , если направление вектора скорости остаётся постоянным (а величина скорости при этом может меняться). Траекторией прямолинейного движения служит прямая линия, на которой лежит вектор скорости.
Например, автомобиль, который едет с постоянной скоростью по извилистой дороге, совершает равномерное (но не прямолинейное) движение. Автомобиль, разгоняющийся на прямом участке шоссе, совершает прямолинейное (но не равномерное) движение.

А вот если при движении тела остаются постоянными как модуль скорости, так и его направление, то движение называется равномерным прямолинейным .

В терминах вектора скорости можно дать более короткие определения данным типам движения:

Важнейшим частным случаем неравномерного движения является равноускоренное движение, при котором остаются постоянными модуль и направление вектора ускорения:

Наряду с материальной точкой в механике рассматривается ещё одна идеализация - твёрдое тело.
Твёрдое тело - это система материальных точек, расстояния между которыми не меняются со временем. Модель твёрдого тела применяется в тех случаях, когда мы не можем пренебречь размерами тела, но можем не принимать во внимание изменение размеров и формы тела в процессе движения.

Простейшими видами механического движения твёрдого тела являются поступательное и вращательное движения.
Движение тела называется поступательным, если всякая прямая, соединяющая две какие-либо точки тела, перемещается параллельно своему первоначальному направлению. При поступательном движении траектории всех точек тела идентичны: они получаются друг из друга параллельным сдвигом (рис. 5).


Рисунок 5.

Движение тела называется вращательным , если все его точки описывают окружности, лежащие в параллельных плоскостях. При этом центры данных окружностей лежат на одной прямой, которая перпендикулярна всем этим плоскостям и называется осью вращения .

На рис. 6 изображён шар, вращающийся вокруг вертикальной оси. Так обычно рисуют земной шар в соответствующих задачах динамики.

Рисунок 6.

Со школьной скамьи, наверное, все помнят, что называется механическим движением тела. Если нет, то в этой статье постараемся не только вспомнить этот термин, но и обновить базовые знания из курса физики, а точнее из раздела "Классической механики". Также будут показаны примеры того, что это понятие употребляется не только в определенной дисциплине, но и в иных науках.

Механика

Для начала разберем, что обозначает это понятие. Механика - это раздел в физике, изучающий движение различных тел, взаимодействие между ними, а так же влияние на эти тела третьих сил и явлений. Движение автомобиля по шоссе, пущенный ударом ноги в ворота футбольный мяч, идущий на - все это изучается именно этой дисциплиной. Обычно, употребляя термин "Механика", имеют в виду "Классическую механику". Что это такое, мы разберем с вами ниже.

Классическую механику делят на три больших раздела.

  1. Кинематика - она изучает движение тел, не рассматривая вопроса, почему они движутся? Здесь интересуют такие величины, как путь, траектория, перемещение, скорость.
  2. Второй раздел - это динамика. Она изучает причины возникновения движения, оперируя такими понятиями, как работа, сила, масса, давление, импульс, энергия.
  3. И третий раздел, самый небольшой - изучающая такое состояние, как равновесие. Она делится на две части. Одна освещает равновесие твердых тел, а вторая - жидкостей и газов.

Очень часто классическую механику называют ньютоновой, ибо основывается она на трех законах Ньютона.

Три закона Ньютона

Впервые они были изложены Исааком Ньютоном в 1687 году.

  1. Первый закон гласит об инерции тела. Это свойство, при котором сохраняется направление и скорость движения материальной точки, если на него не действует никаких внешних сил.
  2. Второй закон утверждает, что тело, приобретая ускорение, совпадает с этим ускорением по направлению, но становится зависимым от своей массы.
  3. Третий закон утверждает, что сила действия всегда равна силе противодействия.

Все три закона являются аксиомами. Иными словами, это постулаты, которые не требуют доказательств.

Что называется механическим движением

Это изменение положения какого-либо тела в пространстве, относительно других тел с течением времени. Материальные точки при этом взаимодействуют по законам механики.

Подразделяется на несколько видов:

  • Движение материальной точки измеряется с помощью нахождения ее координат и отслеживания изменений координат со временем. Найти эти показатели, значит вычислить значения по осям абсцисс и ординат. Изучением этого занимается кинематика точки, которая оперирует такими понятиями, как траектория, перемещение, ускорение, скорость. Движение объекта при этом может быть прямолинейное и криволинейное.
  • Движение твердого тела складывается из перемещения какой-то точки, взятой за основу, и вращательного движения вокруг нее. Изучается кинематикой твердых тел. Перемещение может быть поступательным, то есть вращения вокруг заданной точки не происходит, и все тело движется равномерно, а также плоским - если все тело перемещается параллельно плоскости.
  • Существует так же движение сплошной среды. Это перемещение большого количества точек, связанных только каким-либо полем или областью. Ввиду множества движущихся тел (или материальных точек) одной системы координат здесь недостаточно. Поэтому сколько тел, столько и систем координат. Примером тому может служить волна на море. Она - непрерывна, но состоит из большого количества отдельно взятых точек на множестве систем координат. Вот и получается, что движение волны - перемещение сплошной среды.

Относительность движения

Есть еще такое понятие в механике, как относительность движения. Это влияние какой-либо системы отсчета на механическое движение. Как это понимать? Система отсчета - это система координат плюс часы для Проще говоря, это оси абсцисс и ординат в сочетании с минутами. Посредством такой системы определяется, за какой промежуток времени материальная точка проделала заданное расстояние. Иными словами, переместилось относительно оси координат или других тел.

Системы отсчета могут быть: сопутствующая, инерциальная и неинерциальная. Поясним:

  • Инерциальная СО - это система, где тела, производя то, что называется механическим движением материальной точки, совершают это прямолинейно и равномерно либо вообще находятся в состоянии покоя.
  • Соответственно, неинерциальная СО - система, движущаяся с ускорением или поворачивающаяся по отношению к первой СО.
  • Сопутствующая же СО - это система, которая совместно с материальной точкой, совершает то, что называется механическим движением тела. Иными словами, куда и с какой скоростью перемещается объект, вместе с ним перемещается и данная СО.

Материальная точка

Почему иногда употребляется понятие "тело", а иногда - "материальная точка"? Второй случай указывается, когда размерами самого объекта можно пренебречь. То есть такие параметры, как масса, объем и прочее, не имеют значения для решения возникшей задачи. Например, если цель состоит в том, чтобы узнать, с какой скоростью движется пешеход относительно планеты Земля, то ростом и весом пешехода можно пренебречь. Он является материальной точкой. Механическое движение этого объекта не зависит от его параметров.

Используемые понятия и величины механического движения

В механике оперируют различными величинами, с помощью которых задаются параметры, пишется условие задач и находится решение. Перечислим их.

  • Изменение местоположения тела (или материальной точки) относительно пространства (или системы координат) с течением времени называется перемещение. Механическое движение тела (материальной точки), по сути дела, - это синоним к понятию "перемещение". Просто второе понятие используют в кинематике, а первое - в динамике. Разница между этими подразделами была пояснена выше.
  • Траектория - это линия, по которой тело (материальная точка) совершает то, что называется механическим движением. Ее длина называется путь.
  • Скорость - перемещения какой-либо материальной точки (тела), относительно заданной системы отчета. Определение системы отчета так же давалось выше.

Неизвестные величины, используемые для определения механического движения, в задачах находятся с помощью формулы: S=U*T, где "S" - расстояние, "U" - скорость, а "T" - время.

Из истории

Само понятие "классической механики" появилось еще в древности, и подтолкнуло к этому развивающееся быстрыми темпами строительство. Архимед сформулировал и описал теорему о сложении параллельных сил, ввел понятие "центр тяжести". Так зачиналась статика.

Благодаря Галилею, в 17 веке стала развиваться "Динамика". Закон инерции и принцип относительности - это его заслуга.

Исаак Ньютон, как уже говорилось выше, ввел три закона, которые легли в основу ньютоновой механики. Также он открыл закон всемирного тяготения. Так были заложены основы классической механики.

Неклассическая механика

С развитием физики, как науки, и с появлением больших возможностей в сферах астрономии, химии, математики и прочего классическая механика постепенно стала не основной, но одной из многих восстребованных наук. Когда активно стали вводить и оперировать такими понятиями, как скорость света, квантовая теория поля и так далее, законов, лежащих в основе "Механики", стало не хватать.

Квантовая механика - это раздел физика, который занимается изучением сверхмалых тел (материальных точек) в виде атомов, молекул, электронов и фотонов. Эта дисциплина очень хорошо описывает свойства сверхмалых частиц. Помимо этого, она предсказывает их поведение в той или иной ситуации, а также в зависимости от воздействия. Предсказания, выполненные квантовой механикой, могут очень существенно отличаться от предположений классической механики, так как вторая не способна описать все явления и процессы, протекающие на уровне молекул, атомов и прочего - очень маленького и невидимого невооруженным глазом.

Релятивистская механика - это раздел физики, занимающийся изучением процессов, явлений, а так же законов при скоростях, сопоставимых со скоростью света. Все события, изучаемые этой дисциплиной, происходят в четырехмерном пространстве, в отличие от "классического" - трехмерного. То есть к высоте, ширине и длине мы прибавляем еще один показатель - время.

Какое еще бывает определение механического движения

Мы рассмотрели только базовые понятия, связанные с физикой. Но сам термин употребляется не только в механике, будь то классическая или неклассическая.

В науке под названием "Социально-экономическая статистика" определение механического движения населения дается, как миграция. Иными словами, это перемещение людей на большие расстояния, например, в соседние страны или на соседние континенты с целью смены места жительства. Причинами такого перемещения могут быть, как невозможность продолжать жить на своей территории из-за природных катаклизмов, например, постоянные наводнения или засуха, экономических и социальных проблем в своем государстве, так и вмешательство внешних сил, например, война.

В этой статье рассмотрено то, что называется механическим движением. Примеры приведены не только из физики, но и из других наук. Это указывает на то, что термин является многозначным.


Механическое движение – это изменение положения тела в пространстве относительно других тел.

Например, автомобиль движется по дороге. В автомобиле находятся люди. Люди движутся вместе с автомобилем по дороге. То есть люди перемещаются в пространстве относительно дороги. Но относительно самого автомобиля люди не движутся. В этом проявляется относительность механического движения . Далее кратко рассмотрим основные виды механического движения .

Поступательное движение – это движение тела, при котором все его точки движутся одинаково.

Например, всё тот же автомобиль совершает по дороге поступательное движение. Точнее, поступательное движение совершает только кузов автомобиля, в то время как его колёса совершают вращательное движение.

Вращательное движение – это движение тела вокруг некоторой оси. При таком движении все точки тела совершают движение по окружностям, центром которых является эта ось.

Упоминавшиеся нами колёса совершают вращательное движение вокруг своих осей, и в то же время колёса совершают поступательное движение вместе с кузовом автомобиля. То есть относительно оси колесо совершает вращательное движение, а относительно дороги – поступательное.

Колебательное движение – это периодическое движение, которое совершается поочерёдно в двух противоположных направлениях.

Например, колебательное движение совершает маятник в часах.

Поступательное и вращательное движения – самые простые виды механического движения.

Относительность механического движения

Все тела во Вселенной движутся, поэтому не существует тел, которые находятся в абсолютном покое. По той же причине определить движется тело или нет, можно только относительно какого-либо другого тела.

Например, автомобиль движется по дороге. Дорога находится на планете Земля. Дорога неподвижна. Поэтому можно измерить скорость автомобиля относительно неподвижной дороги. Но дорога неподвижна относительно Земли. Однако сама Земля вращается вокруг Солнца. Следовательно, дорога вместе с автомобилем также вращается вокруг Солнца. Следовательно, автомобиль совершает не только поступательное движение, но и вращательное (относительно Солнца). А вот относительно Земли автомобиль совершает только поступательное движение. В этом проявляется относительность механического движения .

Относительность механического движения – это зависимость траектории движения тела, пройденного пути, перемещения и скорости от выбора системы отсчёта .

Материальная точка

Во многих случаях размером тела можно пренебречь, так как размеры этого тела малы по сравнению с расстоянием, которое походит это тело, или по сравнению с расстоянием между этим телом и другими телами. Такое тело для упрощения расчетов условно можно считать материальной точкой, имеющей массу этого тела.

Материальная точка – это тело, размерами которого в данных условиях можно пренебречь.

Многократно упоминавшийся нами автомобиль можно принять за материальную точку относительно Земли. Но если человек перемещается внутри этого автомобиля, то пренебрегать размерами автомобиля уже нельзя.

Как правило, решая задачи по физике, рассматривают движение тела как движение материальной точки , и оперируют такими понятиями, как скорость материальной точки, ускорение материальной точки, импульс материальной точки, инерция материальной точки и т.п.

Система отсчёта

Материальная точка движется относительно других тел. Тело, по отношению к которому рассматривается данное механическое движение, называется телом отсчёта. Тело отсчёта выбирают произвольно в зависимости от решаемых задач.

С телом отсчёта связывается система координат , которая представляет из себя точку отсчёта (начало координат). Система координат имеет 1, 2 или 3 оси в зависимости от условий движения. Положение точки на линии (1 ось), плоскости (2 оси) или в пространстве (3 оси) определяют соответственно одной, двумя или тремя координатами. Для определения положения тела в пространстве в любой момент времени также необходимо задать начало отсчёта времени.

Система отсчёта – это система координат, тело отсчета, с которым связана система координат, и прибор для измерения времени. Относительно системы отсчёта и рассматривается движение тела. У одного и того же тела относительно разных тел отсчёта в разных системах координат могут быть совершенно различные координаты.

Траектория движения также зависит от выбора системы отсчёта.

Виды систем отсчёта могут быть различными, например, неподвижная система отсчёта, подвижная система отсчёта, инерциальная система отсчёта, неинерциальная система отсчёта.

«) примерно в V в. до н. э. Видимо, одним из первых объектов ее исследования была механе-подъёмная машина, применявшаяся в театре для подъема и опускания актеров, изображавших богов. Отсюда и произошло название науки.

Люди уже давно заметили, что они живут в мире Движущихся предметов - качаются деревья, летят птицы, плывут корабли, поражают цели стрелы, выпущенные из лука. Причины подобных загадочных тогда явлений занимали умы древних и средневековых ученых.

В 1638 г. Галилео Галилей писал: «В природе нет ничего древнее движения, и о нем философы написали томов немало и немалых». Древние и особенно ученые средневековья и эпохи Возрождения ( , Н. Коперник, Г. Галилей, И. Кеплер, Р. Декарт и др.) уже правильно толковали отдельные вопросы движения, однако в целом ясного понимания законов движения во времена Галилея не было.

Учение о движении тел впервые предстает как строгая, последовательная наука, построенная, как и геометрия Евклида, на истинах, не требующих доказательств (аксиомах), в фундаментальном труде Исаака Ньютона «Математические начала натуральной философии», изданном в 1687 г. Оценивая вклад в науку ученых-предшественников, великий Ньютон сказал: «Если мы видели дальше других, то это потому, что стояли на плечах гигантов».

Движения вообще, движения, безотносительного к чему-либо, нет и быть не может. Движение тел может происходить только относительно других тел и связанных с ними пространств. Поэтому в начале своего труда Ньютон решает принципиально важный вопрос о пространстве, относительно которого будет изучаться движение тел.

Чтобы придать конкретность этому пространству, Ньютон связывает с ним систему координат, состоящую из трех взаимно перпендикулярных осей.

Ньютон вводит понятие абсолютное пространство, которое определяет так: «Абсолютное пространство по самой своей сущности безотносительно к чему бы то ни было внешнему остается всегда одинаковым и неподвижным». Определение пространства как неподвижного тождественно предположению о существовании абсолютно неподвижной системы координат, относительно которой рассматривается движение материальных точек и твердых тел.

В качестве такой системы координат Ньютон принимал гелиоцентрическую систему , начало которой он помещал в центр , а три воображаемых взаимно перпендикулярных оси направлял к трем «неподвижным» звездам. Но сегодня известно, что в мире нет ничего абсолютно неподвижного - вращается вокруг своей оси и вокруг Солнца, Солнце движется относительно центра Галактики, Галактика - относительно центра мира и т. д.

Таким образом, если говорить строго, то абсолютно неподвижной системы координат не существует. Однако движение «неподвижных» звезд относительно Земли настолько медленное, что для большинства задач, решаемых людьми на Земле, этим движением можно пренебречь и считать «неподвижные» звезды действительно неподвижными, а абсолютно неподвижную систему координат, предложенную Ньютоном, действительно существующей.

По отношению к абсолютно неподвижной системе координат Ньютон сформулировал свой первый закон (аксиому): «Всякое тело продолжает удерживаться в своем состоянии покоя или равномерного прямолинейного движения, пока и поскольку оно не понуждается приложенными изменять это состояние».

С тех пор предпринимались и предпринимаются попытки редакционно улучшить формулировку Ньютона. Один из вариантов формулировок звучит так: «Тело, движущееся в пространстве, стремится сохранить величину и направление своей скорости» (имеется в виду, что покой - это движение со скоростью, равной нулю). Здесь уже вводится понятие одной из важнейших характеристик движения - поступательной, или линейной, скорости. Обычно линейная скорость обозначается V.

Обратим внимание на то, что в первом законе Ньютона говорится только о поступательном (прямолинейном) движении. Однако всем известно, что в мире существует и другое, более сложное движение тел - криволинейное, но о нем позже…

Стремление тел «удерживаться в своем состоянии» и «сохранять величину и направление своей скорости» называется инертностью , или инерцией , тел. Слово «инерция» латинское, в переводе на русский оно означает «покой», «бездействие». Интересно отметить, что инерция - органическое свойство материи вообще, «врожденная сила материи», как говорил Ньютон. Она свойственна не только механическому движению, но и другим явлениям природы, например электрическим, магнитным, тепловым. Инерция проявляется и в жизни общества, и в поведении отдельных людей. Но вернемся к механике.

Мерой инерции тела при его поступательном движении является масса тела, обозначаемая обычно m. Установлено, что при поступательном движении на величину инерции не влияет распределение массы внутри объема, занимаемого телом. Это дает основание при решении многих задач механики отвлечься от конкретных размеров тела и заменить его материальной точкой, масса которой равна массе тела.

Местоположение этой условной точки в объеме, занимаемом телом, называется центром масс тела , или, что почти то же самое, но более знакомо, центром тяжести .

Мерой механического прямолинейного движения, предложенной еще Р. Декартом в 1644 г., является количество движения, определяемое как произведение массы тела на его линейную скорость: mV.

Как правило, движущиеся тела не могут продолжительное время сохранять неизменным величину количества своего движения: расходуются в полете запасы топлива, уменьшая массу летательных аппаратов, тормозят и разгоняются поезда, изменяя свою скорость. Какая же причина вызывает изменение количества движения? Ответ па этот вопрос дает второй закон (аксиома) Ньютона, который в современной формулировке звучит так: скорость изменения количества движения материальной точки равна силе, действующей на эту точку.

Итак, причиной, вызывающей движение тел (если вначале mV=0) или изменяющей их количество движения (если вначале mV не равно О) относительно абсолютного пространства (других пространств Ньютон не рассматривал), являются силы. Эти силы позже получили уточняющие названия - физические , или Ньютоновы , силы. Они обычно обозначаются F.

Сам Ньютон дал следующее определение физическим силам: «Приложенная сила есть действие, производимое над телом, чтобы изменить его состояние покоя или равномерного прямолинейного движения». Существует много других определений силы. Л. Купер и Э. Роджерс - авторы замечательных популярных книг по физике, избегая скучноватых строгих определений силы, с известной долей лукавства вводят свое определение: «Силы - это то, что тянет и толкает». До конца не ясно, но какое-то представление о том, что такое сила, появляется.

К физическим силам относятся: силы , магнитные (см. статью « «), силы упругости и пластичности, силы сопротивления среды, света и многие другие.

Если во время движения тела его масса не меняется (только этот случай будет рассматриваться в дальнейшем), то формулировка второго закона Ньютона значительно упрощается: «Действующая на материальную точку сила равна произведению массы точки на изменение ее скорости».

Изменение линейной скорости тела или точки (по величине или направлению - запомним это) называется линейным ускорением тела или точки и обозначается обычно а.

Ускорения и скорости, с которыми тела движутся относительно абсолютного пространства, называются абсолютными ускорениями и скоростями .

Кроме абсолютной системы координат, можно представить себе (конечно, с какими-то допущениями) другие системы координат, которые движутся относительно абсолютной прямолинейно и равномерно. Поскольку (согласно первому закону Ньютона) покой и равномерное прямолинейное движение эквивалентны, то в таких системах справедливы законы Ньютона, в частности первый закон - закон инерции . По этой причине системы координат, движущиеся равномерно и прямолинейно относительно абсолютной системы, получили название инерциальных систем координат .

Однако в большинстве практических задач людей интересует движение тел не относительно далекого и неосязаемого абсолютного пространства и даже не относительно инерциальных пространств, а относительно других более близких и вполне материальных тел, например пассажира относительно кузова автомобиля. Но эти другие тела (и связанные с ними пространства и системы координат) сами движутся относительно абсолютного пространства непрямолинейно и неравномерно. Системы координат, связанные с такими телами, получили название подвижных . Впервые подвижные системы координат использовал для решения сложных задач механики Л. Эйлер (1707-1783).

С примерами движения тел относительно других подвижных тел мы постоянно встречаемся в нашей жизни. Плывут по морям и океанам корабли, перемещаясь относительно поверхности Земли, вращающейся в абсолютном пространстве; движется относительно стен мчащегося пассажирского вагона проводник, разносящий чай по купе; выплескивается чай из стакана при резких толчках вагона и т. д.

Для описания и изучения столь сложных явлений вводятся понятия переносного движения и относительного движения и соответствующих им переносных и относительных скоростей и ускорений.

В первом из приведенных примеров вращение Земли относительно абсолютного пространства будет переносным движением, а перемещение корабля относительно поверхности Земли - относительным движением.

Чтобы изучить движение проводника относительно стен вагона, нужно прежде принять, что вращение Земли существенного влияния на движение проводника не оказывает и поэтому Землю в данной задаче можно считать неподвижной. Тогда движение пассажирского вагона - движение переносное , а движение проводника относительно вагона — движение относительное . При относительном движении тела воздействуют друг на друга или непосредственно (соприкасаясь), или на расстоянии (например, магнитные и гравитационные взаимодействия).

Характер этих воздействий определяется третьим законом (аксиомой) Ньютона. Если вспомнить, что физические силы, приложенные к телам, Ньютон назвал действием, то третий закон может быть сформулирован так: «Действие равно противодействию». Следует отметить, что действие приложено к одному, а противодействие - к другому из двух взаимодействующих тел. Действие и противодействие не уравновешиваются, а вызывают ускорения взаимодействущих тел, причем с большим ускорением движется то тело, масса которого меньше.

Напомним также, что третий закон Ньютона в отличие от первых двух справедлив в любой системе координат, а не только в абсолютной или инерциальных.

Кроме прямолинейного движения, в природе широко распространено криволинейное движение, простейшим случаем которого является движение по окружности. Только этот случай мы и будем рассматривать в дальнейшем, называя движение по окружности круговым движением. Примеры кругового движения: вращение Земли вокруг своей оси, движение дверей и качелей, вращение бесчисленных колес.

Круговое движение тел и материальных точек может происходить либо вокруг осей, либо вокруг точек.

Круговое движение (так же, как и прямолинейное) может быть абсолютным, переносным и относительным.

Как и прямолинейное, круговое движение характеризуется скоростью, ускорением, силовым фактором, мерой инерции, мерой движения. Количественно все эти характеристики в очень сильной степени зависят от того, на каком расстоянии от оси вращения находится вращающаяся материальная точка. Это расстояние называется радиусом вращения и обозначается r .

В гироскопической технике момент количества движения принято называть кинетическим моментом и выражать его через характеристики кругового движения. Таким образом, кинетический момент есть произведение момента инерции тела (относительно оси вращения) на его угловую скорость.

Естественно, законы Ньютона справедливы и для кругового движения. В применении к круговому движению эти законы несколько упрощенно могли бы быть сформулированы так.

  • Первый закон: вращающееся тело стремится сохранить относительно абсолютного пространства величину и направление своего момента количества движения (т. е. величину и направление своего кинетического момента).
  • Второй закон: изменение во времени момента количества движения (кинетического момента) равно приложенному моменту сил.
  • Третий закон: момент действия равен моменту противодействия.

Механическим движением тела называют измене­ние его положения в пространстве относительно других тел с течением времени. Например, человек, едущий на эскалато­ре в метро, находится в покое относительно самого эскалатора и перемещается относительно стен тунне­ля

Виды механического движения:

  • прямолинейные и криволинейные — по форме траектории;
  • равномерные и неравномерные — по закону движения.

Механическое движение относительно. Это проявляется в том, что форма траектории, перемещение, скорость и другие характеристики движения тела зависит от выбора системы отсчета.

Тело, относительно которого рассматривается движение, называется телом отсчета . Система ко­ординат, тело отсчета, с которым она связана, и прибор для отсчета времени образуют си­стему отсчета , относительно которой и рассматривается движение тела.

Иногда размерами тела по сравнению с расстоянием до него можно пренебречь. В этих случаях тело считают материальной точкой.

Определение положения тела в любой момент времени является основной задачей механики .

Важными характеристиками движения являются траектория материальной точки, перемещение, скорость и ускорение. Линию, вдоль которой движется материальная точка, называют траекторией . Длина траектории называется путем (L). Единица измерения пути - 1м. Вектор, соединяющий начальную и конечную точки траектории, называется перемещением (). Единица изме­рения перемещения-1м .

Простейший вид движения равномерное прямолинейное движение. Движение, при котором тело за любые равные промежутки вре­мени совершает одинаковы перемещения, назы­вают прямолинейным равномерным движением. Скорость () - векторная физическая величина, характеризующая быстроту перемещения тела, чис­ленно равная отношению перемещения за малый промежуток времени к величине этого промежутка. Определяющая формула скорости имеет вид v = s/t . Единица изме­рения скорости - м/с . Измеряют скорость спидометром.

Движение тела, при котором его скорость за любые промежутки времени изменяется одинаково, называют равноуско­ренным или равнопеременным.

физическая величина, характеризующая быстроту изменения скорости и численно равная отношению вектора изменения скорости за единицу времени. Единица ускорения в СИм/с 2 .

равноускоренным , если модуль скорости возрастает.— условие равноускоренного движения. Например, разгоняющиеся транспортные средства- автомобили, поезда и свободное падение тел вблизи поверхности Земли ( = ).

Равнопеременное движение называется равнозамедленным , если модуль скорости уменьшается. — условие равнозамедленного движения.

Мгновенная скорость равноускоренного прямолинейного движения



Похожие статьи