Уравнение - что такое? Определение термина, примеры.

Инструкция

Если уравнение представлено в виде: dy/dx = q(x)/n(y), относите их к категории дифференциальных уравнений с разделяющимися переменными. Их можно решить, записав условие в дифференциалах по следующей : n(y)dy = q(x)dx. Затем проинтегрируйте обе части. В некоторых случаях решение записывается в виде интегралов, взятых от известных функций. К примеру, в случае dy/dx = x/y, получится q(x) = x, n(y) = y. Запишите его в виде ydy = xdx и проинтегрируйте. Должно получиться y^2 = x^2 + c.

К линейным уравнениям относите уравнения «первой ». Неизвестная функция с ее производными входит в подобное уравнение лишь в первой степени. Линейное имеет вид dy/dx + f(x) = j(x), где f(x) и g(x) – функции, зависящие от x. Решение записывается с помощью интегралов, взятых от известных функций.

Учтите, что многие дифференциальные уравнения - это уравнения второго порядка (содержащие вторые производные) Таким, например, является уравнение простого гармонического движения, записанное в виде общей : md 2x/dt 2 = –kx. Такие уравнения имеют, в , частные решения. Уравнение простого гармонического движения является примером достаточно важного : линейных дифференциальных уравнений, у которых имеется постоянный коэффициент.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Задачи на дифференциальное и интегральное исчисление являются важными элементами закрепления теории математического анализа, раздела высшей математики, изучаемой в вузах. Дифференциальное уравнение решается методом интегрирования.

Инструкция

Дифференциальное исчисление исследует свойства . И наоборот, интегрирование функции позволяет по данным свойствам, т.е. производным или дифференциалам функции найти ее саму. В этом и заключается решение дифференциального уравнения.

Любое является соотношением между неизвестной величиной и известными данными. В случае дифференциального уравнения роль неизвестного играет функция, а роль известных величин – ее производные. Кроме этого, соотношение может содержать независимую переменную:F(x, y(x), y’(x), y’’(x),…, y^n(x)) = 0, где x – неизвестная переменная, y(x) – функция, которую нужно определить, порядок уравнения – это максимальный порядок производной (n).

Такое уравнение называется обыкновенным дифференциальным уравнением. Если же в соотношении несколько независимых переменных и частные производные (дифференциалы) функции по этим переменным, то уравнение называется дифференциальным уравнением с частными производными и имеет вид:x∂z/∂y - ∂z/∂x = 0, где z(x, y) – искомая функция.

Итак, чтобы научиться решать дифференциальные уравнения, необходимо уметь находить первообразные, т.е. решать задачу, обратную дифференцированию. Например:Решите уравнение первого порядка y’ = -y/x.

РешениеЗамените y’ на dy/dx: dy/dx = -y/x.

Приведите уравнение к виду, удобному для интегрирования. Для этого умножьте обе части на dx и разделите на y:dy/y = -dx/x.

Проинтегрируйте:∫dy/y = - ∫dx/x + Сln |y| = - ln |x| + C.

Это решение называется общим дифференциального уравнения. С – это константа, множество значений которой определяет множество решений уравнения. При любом конкретном значении С решение будет единственным. Такое решение является частным решением дифференциального уравнения.

Решение большинства уравнений высших степеней не имеет четкой формулы, как нахождение корней квадратного уравнения . Однако существует несколько способов приведения, которые позволяют преобразовать уравнение высшей степени к более наглядному виду.

Инструкция

Наиболее распространенным методом решения уравнений высших степеней является разложение . Этот подход представляет собой комбинацию подбора целочисленных корней, делителей свободного члена, и последующее деление общего многочлена на вида (x – x0).

Например, решите уравнение x^4 + x³ + 2·x² – x – 3 = 0.Решение.Свободным членом данного многочлена является -3, следовательно, его целочисленными делителями могут быть числа ±1 и ±3. Подставьте их по очереди в уравнение и выясните, получится ли тождество:1: 1 + 1 + 2 – 1 – 3 = 0.

Второй корень x = -1. Поделите на выражение (x + 1). Запишите получившееся уравнение (x - 1)·(x + 1)·(x² + x + 3) = 0. Степень понизилась до второй, следовательно, уравнение может иметь еще два корня. Чтобы найти их, решите квадратное уравнение:x² + x + 3 = 0D = 1 – 12 = -11

Дискриминант – отрицательная величина, значит, действительных корней у уравнения больше нет. Найдите комплексные корни уравнения:x = (-2 + i·√11)/2 и x = (-2 – i·√11)/2.

Другой метод решения уравнения высшей степени – замена переменных для приведения его к квадратному. Такой подход используется, когда все степени уравнения четные, например:x^4 – 13·x² + 36 = 0

Теперь найдите корни исходного уравнения:x1 = √9 = ±3; x2 = √4 = ±2.

Совет 10: Как определить окислительно-восстановительные уравнения

Химическая реакция – это процесс превращения веществ, протекающий с изменением их состава. Те вещества, которые вступают в реакцию, называются исходными, а те, которые образуются в результате этого процесса – продуктами. Бывает так, что в ходе химической реакции элементы, входящие в состав исходных веществ, изменяют свою степень окисления. То есть они могут принять чужие электроны и отдать свои. И в том, и в другом случае меняется их заряд. Такие реакции называются окислительно-восстановительными.

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уравнение - это два выражения, соединенные знаком равенства; в эти выражения входят одна или несколько переменных, называемых неизвестными. Решить уравнение - значит найти все значения неизвестных, при которых оно обращается в верное равенство, или установить, что таких значений нет.

В школьном курсе, как правило, рассматривают уравнения, в которых неизвестные принимают числовые значения. Числовое значение неизвестного, удовлетворяющее уравнению с одним неизвестным, называется корнем или решением этого уравнения. Набор чисел, удовлетворяющих уравнению с несколькими неизвестными, называется его решением.

В математике рассматривают также уравнения, в которых неизвестными являются целые числа (диофантовы уравнения), векторы (векторные уравнения), функции (дифференциальные, интегральные, функциональные уравнения) и объекты другой природы. Вместе с уравнением указывают его область определения (множество допустимых значений неизвестных); если это не сделано, то предполагается, что это естественная общая область определения выражений, стоящих в левой и правой частях уравнения.

Уравнение одно из важнейших понятий математики. В большинстве практических и научных задач, где какую-то величину нельзя непосредственно измерить или вычислить по готовой формуле, удается составить соотношение (или несколько соотношений), которым оно удовлетворяет. Так получают уравнение (или систему уравнений) для определения неизвестной величины.

Развитие методов решения уравнений, начиная с зарождения математики как науки, долгое время было основным предметом изучения алгебры. Привычная нам буквенная запись уравнений окончательно сложилась в XVI в.; традиция обозначать неизвестные последними буквами латинского алфавита , , , …, а известные величины (параметры) - первыми , , , ... идет от французского ученого Р. Декарта.

Обычный путь алгебраического (чаще говорят, аналитического) решения уравнения состоит в том, что с помощью преобразований его сводят к более простым уравнениям. Если все решения одного уравнения являются решениями другого, то второе уравнение называется следствием первого. Если каждое из двух уравнений - следствие другого (т.е. множества их решений совпадают), то такие уравнения называются равносильными. Применяя к обеим частям уравнения одно и то же преобразование, мы приходим к следствию этого уравнения. Если же это преобразование обратимо, то получается уравнение, равносильное данному. (Например, умножая обе части уравнения на одно и то же число, мы получаем следствие данного уравнения. Если это число отлично от нуля, то выполненное преобразование обратимо, так что полученное уравнение равносильно исходному).

Решая уравнение с одним неизвестным, мы пытаемся прийти к простейшим уравнениям, для решения которых есть готовые формулы. Эго линейные уравнения, квадратные уравнении, уравнения вида , где - число, а - одна из основных элементарных функций: степенная , показательная , логарифмическая , тригонометрические , , .

Заметим, что запись общего решения уравнения требует введения функции , обратной к функции . Если , то ; если , то ; если и , то .

Как же сводятся уравнения к простейшим? Для конкретного типа уравнений (алгебраических, тригонометрических, иррациональных, показательных, логарифмических и т.п.) разработаны частные приемы решения. Из общих методов решения уравнений остановимся на трех, которые встречаются чаще всего.

Если левую часть уравнения удается разложить на множители: , то оно распадается на уравнения , , …, , объединение множеств их решений дает множество решений данного уравнения. Например, уравнение можно решить так:

,

.

Решая уравнения и , находим все корни данного уравнения: 1, 2 и -3. Этот метод принято называть методом разложения на множители.

Часто удается упростить уравнение, принимая в качестве новой неизвестной некоторую функцию от старой неизвестной. Например, уравнение можно свести к квадратному уравнению, положив .Тогда , и мы приходим к уравнению .

Иногда удается решить уравнение, анализируя функциональные свойства его левой и правой частей.

Например, так как левая часть уравнения возрастает, а правая - постоянна, то это уравнение не может иметь более одного корня. Единственный корень легко угадывается.

Решая уравнение , заметим, что при всех выполняются неравенства , , откуда , а так как , то данное уравнение не имеет корней.

До сих пор мы разбирали приемы решения уравнений, позволяющие найти корень уравнения как число или комбинацию известных функций от параметров. Однако далеко не все уравнения, возникающие на практике, можно решить подобным образом. Например, в начале XIX в. было доказано, что не существует общей формулы для решения алгебраических уравнений начиная с пятой степени. Да и в тех случаях, когда уравнение удается решить, формула для корней может быть чересчур громоздкой. Поэтому в математике разработаны различные методы приближенного решения уравнений. Простейший из них основан на том, что если функция непрерывна во всех точках отрезка и принимает на его концах значения разных знаков, то уравнение имеет на этом отрезке корень.

С помощью графика особенно удобно проводить исследование уравнений; например, по графику (рис. 2) мы сразу видим, что уравнение имеет три корня при , два - при и один - при .

Учебник: Математика: Учеб. для 5 кл. общеобразоват. учреждений / Н.Я.Виленкин, В.И.Жохов, А.С.Чесноков, С.И.Шварцбурд. – М.: Мнемозина, 1997 и последующие.

Цели урока:

  • обучение работе в группах, формирование навыков общения “учитель – ученик”, “ученик – ученик”;
  • формирование навыков математической речи, контроля и самоконтроля;
  • обучение работе с учебником;
  • проверка знаний теоретического и практического материала при решении уравнений с помощью компонентов.

Подготовка к уроку:

  • разбить учащихся класса на группы по 4-5 человек так, чтобы в каждой группе были обучающиеся разных уровней;
  • расстановка парт в классе таким образом, чтобы отдельно друг от друга могли работать пять групп по 4-5 человек в каждой;
  • подготовка дидактического материала:

а) карточки с вопросами к зачету (для каждого ученика):

б) лист самопроверки (один на группу):

в) оценочный лист (один на группу):

Фамилия, имя

оценка

ХОД УРОКА

I. Проверка домашней работы (фронтально).

– Что называется уравнением?
– Что значит решить уравнение?
– Что называется корнем уравнения?

Проговорить решение домашних уравнений (№ 395):

Уравнение Образец устного ответа
а) 395 + x = 864,
x = 864 – 395,
x = 469.

Ответ: 469

395 + x = 864.

Чтобы найти неизвестное слагаемое,
надо из суммы вычесть известное слагаемое.
Корень уравнения – 469.

в) 300 – y = 206,
y = 300 – 206,
y = 94.

Ответ: 94

300 – y = 206.

Чтобы найти неизвестное вычитаемое,
надо из уменьшаемого вычесть разность.
Корень уравнения – 94.

д) 166 = m – 34,
m = 166 + 34,
m = 200.

Ответ: 200

166 = m – 34.

Чтобы найти неизвестное уменьшаемое,
надо сложить вычитаемое и разность.
Корень уравнения – 200.

II. Работа в группах

Каждый ученик в группе решает уравнение индивидуально. На теоретические вопросы один ученик в группе отвечает учителю, второй – ученику, который уже ответил, третий – второму и т.д. Во время ответа заполняется “оценочный лист”. Если ученик отвечает правило без учебника, то напротив его фамилии в оценочном листе проставляется “+”, если отвечает с помощью учебника, то “”. При ответе ученика проверяющий, который нетвердо знает правило, пользуется листом самопроверки. Решение уравнений проверяет учитель, и общая оценка выставляется после того, как проверены все задания.

Критерии оценки:

  • оценка “5” выставляется в том случае, если ученик проговорил все правила без помощи учебника и решил все уравнения без ошибок;
  • оценка “4” выставляется в том случае, если ученик при устном ответе обратился к учебнику не более одного раза, допустил при решении уравнения не более одной ошибки;
  • оценка “3” ставится в том случае, если ученик отвечал правила по учебнику, при решении уравнения сомневался в применении правил на нахождение компонентов.

III. Итог урока: оценки каждому ученику.

IV. Домашнее задание: № 396.



Похожие статьи