Эдс индукции в движущихся проводниках. Что такое ЭДС индукции и когда возникает

Возникновение в проводнике ЭДС индукции

Если поместить в проводник и перемещать его так, чтобы он при своем движении пересекал силовые линии поля, то в проводнике возникнет , называемая ЭДС индукции .

ЭДС индукции возникнет в проводнике и в том случае, если сам проводник останется неподвижным, а перемещаться будет магнитное поле, пересекая проводник своими силовыми линиями.

Если проводник, в котором наводится ЭДС индукции, замкнуть на какую-либо внешнюю цепь, то под действием этой ЭДС по цепи потечет ток, называемый индукционным током.

Явление индуктирования ЭДС в проводнике при пересечении его силовыми линиями магнитного поля называется электромагнитной индукцией .

Электромагнитная индукция - это обратный процесс, т. е. превращение механической энергии в электрическую.

Явление электромагнитной индукции нашло широчайшее применение в . На использовании его основано устройство различных электрических машин.

Величина и направление ЭДС индукции

Рассмотрим теперь, каковы будут величина и направление индуктированной в проводнике ЭДС.

Величина ЭДС индукции зависит от количества силовых линий поля, пересекающих проводник в единицу времени, т. е. от скорости движения проводника в поле.

Величина индуктированной ЭДС находится в прямой зависимости от скорости движения проводника в магнитном поле.

Величина индуктированной ЭДС зависит также и от длины той части проводника, которая пересекается силовыми линиями поля. Чем большая часть проводника пересекается силовыми линиями поля, тем большая ЭДС индуктируется в проводнике. И, наконец, чем сильнее магнитное поле, т. е. чем больше его индукция, тем большая ЭДС возникает в проводнике, пересекающем это поле.

Итак, величина ЭДС индукции, возникающей в проводнике при его движении в магнитном поле, прямо пропорциональна индукции магнитного поля, длине проводника и скорости его перемещения.

Зависимость эта выражается формулой Е = Blv,

где Е - ЭДС индукции; В - магнитная индукция; I - длина проводника; v - скорость движения проводника.

Следует твердо помнить, что в проводнике, перемещающемся в магнитном поле, ЭДС индукции возникает только в том случае, если этот проводник пересекается магнитными силовыми линиями поля. Если же проводник перемещается вдоль силовых линий поля, т. е. не пересекает, а как бы скользит по ним, то никакой ЭДС в нем не индуктируется. Поэтому приведенная выше формула справедлива только в том случае, когда проводник перемещается перпендикулярно магнитным силовым линиям поля.

Направление индуктированной ЭДС (а также и тока в проводнике) зависит от того, в какую сторону движется проводник. Для определения направления индуктированной ЭДС существует правило правой руки.

Если держать ладонь правой руки так, чтобы в нее входили магнитные силовые линии поля, а отогнутый большой палец указывал бы направление движения проводника, то вытянутые четыре пальца укажут направление действия индуктированной ЭДС и направление тока в проводнике.

Правило правой руки

ЭДС индукции в катушке

Мы уже говорили, что для создания в проводнике ЭДС индукции необходимо перемещать в магнитном поле или сам проводник, или магнитное поле. В том и другом случае проводник должен пересекаться магнитными силовыми линиями поля, иначе ЭДС индуктироваться не будет. Индуктированную ЭДС, а следовательно, и индукционный ток можно получить не только в прямолинейном проводнике, но и в проводнике, свитом в катушку.

При движении внутри постоянного магнита в ней индуктируется ЭДС за счет того, что магнитный поток магнита пересекает витки катушки, т. е. точно так же, как это было при движении прямолинейного проводника в поле магнита.

Если магнит опускать в катушку медленно, то возникающая в ней ЭДС будет настолько мала, что стрелка прибора может даже не отклониться. Если же, наоборот, магнит быстро ввести в катушку, то отклонение стрелки будет большим. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от скорости движения магнита, т. е. от того, насколько быстро силовые линии поля пересекают витки катушки. Если теперь поочередно вводить в катушку с одинаковой скоростью сначала сильный магнит, а затем слабый, то можно заметить, что при сильном магните стрелка прибора будет отклоняться на больший угол. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от величины магнитного потока магнита.

И, наконец, если вводить с одинаковой скоростью один и тот же магнит сначала в катушку с большим числом витков, а затем со значительно меньшим, то в первом случае стрелка прибора отклонится на больший угол, чем во втором. Значит, величина индуктируемой ЭДС, а следовательно, и сила тока в катушке зависят от числа ее витков. Те же результаты можно получить, если вместо постоянного магнита применять электромагнит.

Направление ЭДС индукции в катушке зависит от направления перемещения магнита. О том, как определять направление ЭДС индукции, говорит закон, установленный Э. X. Ленцем.

Закон Ленца для электромагнитной индукции

Всякое изменение магнитного потока внутри катушки сопровождается возникновением в ней ЭДС индукции, причем чем быстрее изменяется магнитный поток, пронизывающий катушку, тем большая ЭДС в ней индуктируется.

Если катушка, в которой создана ЭДС индукции, замкнута на внешнюю цепь, то по виткам ее идет индукционный ток, создающий вокруг проводника магнитное поле, в силу чего катушка превращается в соленоид. Получается таким образом, что изменяющееся внешнее магнитное поле вызывает в катушке индукционный ток, которой, в свою очередь, создает вокруг катушки свое магнитное поле - поле тока.

Изучая это явление, Э. X. Ленц установил закон, определяющий направление индукционного тока в катушке, а следовательно, и направление ЭДС индукции. ЭДС индукции, возникающая в катушке при изменении в ней магнитного потока, создает в катушке ток такого направления, при котором магнитный поток катушки, созданный этим током, препятствует изменению постороннего магнитного потока.

Закон Ленца справедлив для всех случаев индуктирования тока в проводниках, независимо от формы проводников и от того, каким способом достигается изменение внешнего магнитного поля.


При движении постоянного магнита относительно проволочной катушки, присоединенной к клеммам гальванометра, или при движении катушки относительно магнита возникает индукционный ток.

Индукционные токи в массивных проводниках

Изменяющийся магнитный поток способен индуктировать ЭДС не только в витках катушки, но и в массивных металлических проводниках. Пронизывая толщу массивного проводника, магнитный поток индуктирует в нем ЭДС, создающую индукционные токи. Эти так называемые распространяются по массивному проводнику и накоротко замыкаются в нем.

Сердечники трансформаторов, магнитопроводы различных электрических машин и аппаратов представляют собой как раз те массивные проводники, которые нагреваются возникающими в них индукционными токами. Явление это нежелательно, поэтому для уменьшения величины индукционных токов части электрических машин и сердечники трансформаторов делают не массивными, а состоящими из тонких листов, изолированных один от другого бумагой или слоем изоляционного лака. Благодаря этому преграждается путь распространения вихревых токов по массе проводника.

Но иногда на практике вихревые токи используются и как токи полезные. На использовании этих токов основана, например, работа , и так называемых магнитных успокоителей подвижных частей электроизмерительных приборов.

Индуктированная электродвижущая сила (ЭДС) возникает в следующих случаях:

  1. Когда движущийся проводник пересекает неподвижное магнитное поле или, наоборот, перемещающееся магнитное поле пересекает неподвижный проводник; или когда проводник и магнитное поле, двигаясь в пространстве, перемещаются один относительно другого;
  2. Когда переменное магнитное поле одного проводника, действуя на другой проводник, индуктирует в нем ЭДС (взаимоиндукция);
  3. Когда изменяющееся магнитное поле индуктирует в енм самом ЭДС (самоиндукция).

Таким образом, всякое изменение во времени величины магнитного потока, пронизывающего замкнутый контур (виток, рамку), сопровождается появлением в проводнике индуктированной ЭДС.

Как было отмечено в статье "Явление электромагнитной индукции ", направление ЭДС магнитной индукции зависит от направления движения проводника и от направления магнитного поля.

Для определения направления индуктированной ЭДС в проводнике служит "правило правой руки". Оно заключается в следующем: если мысленно расположить правую руку в магнитном поле вдоль проводника так, чтобы магнитные линии, выходящие из северного полюса, входили в ладонь, а большой отогнутый палец совпадал с направлением движения проводника, то четыре вытянутых пальца будут указывать направление индуктированной ЭДС в проводнике (рисунок 1).

Рисунок 1. Определение направления ЭДС индукции в проводнике по "правилу правой руки"

В случаях, когда проводник остается неподвижным, а магнитное поле движется, для определения направления индуктированной ЭДС нужно предположить, что поле остается неподвижным, а проводник движется в сторону, обратную движению поля, и применить "правило правой руки".

Явление индуктированной ЭДС можно также объяснить при помощи электронной теории.

Поместим проводник в магнитное поле. Свободные электроны проводника будут находиться в беспорядочном тепловом движении. Положительные и отрицательные заряды равномерно расположены по всему объему проводника и взаимно нейтрализуют друг друга. Будем перемещать проводник с определенной скоростью в однородном магнитном поле в направлении n (рисунок 2) перпендикулярно вектору магнитной индукции. Магнитные линии, показанные точками, направлены из-за плоскости чертежа к читателю.

На электрические заряды проводника в этом случае будет действовать сила, под действием которой свободные электроны получат добавочную составляющую скорости и будут двигаться вдоль проводника.

В то время как положительные заряды, связанные с кристаллической решеткой проводника, относительно проводника не смещаются, движущиеся вместе с проводником свободные электроны могут перемещаться относительно него.

В нашем примере электроны движутся от нижнего края проводника к его верхнему краю, что соответствует направлению тока сверху вниз. Направление индуктированной ЭДС и тока в проводнике, как легко убедиться, согласуется с правилом правой руки.

Величина ЭДС индукции магнитного поля в проводнике зависит:

  1. от величины индукции B магнитного поля, так как чем гуще расположены магнитные индукционные линии, тем больше число их пересечет проводник за единицу времени (секунду);
  2. от скорости движения проводника v в магнитном поле, так как при большой скорости движения проводник может больше пересечь индукционных линий в секунду;
  3. от рабочей (находящейся в магнитном поле) длины проводника l , так как длинный проводник может больше пересечь индукционных линий в секунду;
  4. от величины синуса угла α между направлением движения проводника и направлением магнитного поля (рисунок 3).

Раскладываем вектор скорости движения проводника в магнитном поле на две составляющие: v n - составляющую нормальную к направлению поля (v n = v × sin α) и v t - тангенциальную составляющую (v t = v × cos α), которая не принимает участия в создании ЭДС, так как при движени под воздействием тангенциальной составляющей проводник двигался бы параллельно вектору B и не пересекал бы линии магнитной индукции.

Формула ЭДС индукции дает возможность определить ее величину:

e = B × l × v × sin α (В) .

Познакомившись с явлением электромагнитной индукции, рассмотрим еще раз процесс преобразования электрической энергии в механическую.


Рисунок 4. Преобразование электрической энергии в механическую

Пусть прямолинейный проводник АВ (рисунок 4), по которому проходит ток от источника напряжения, помещен во внешнее магнитное поле. Если проводник неподвижен, то энергия источника напряжения расходуется исключительно на нагрев проводника:

A = U × I × t = I ² × r × t (Дж) .

Затрачиваемая мощность будет равна:

P эл = U × I = I ² × r (Вт) ,

откуда определяем ток в цепи:

(1)

Однако нам известно, что проводник с током, помещенный в магнитное поле, будет испытывать силу со стороны поля, стремящуюся перемещать проводник в магнитном поле в направлении, определяемом правилом левой руки. При своем движении проводник будет пересекать магнитные силовые линии поля и в нем по закону электромагнитной индукции возникнет индуктированная ЭДС. Направление этой ЭДС, определенное по правилу правой руки, будет обратным току I . Назовем ее обратной ЭДС E обр. Величина E обр согласно закону электромагнитной индукции будет равна.

Рассмотрим, также как и при выводе выражения для работы перемещения контура, плоский контур, содержащий источник ЭДС, одна сторона у которого подвижна (см. рис. 2).

Источник с ЭДС равной создает в контуре ток , развивая при этом мощность, равную . Эта мощность переходит в тепло, согласно закону Джоуля-Ленца ‑ . На основании закона сохранения энергии запишем:

Возбудим теперь однородное магнитное поле, направленное от нас за чертеж. Вектор совпадает с положительной нормалью к контуру , поэтому магнитный поток положителен. Согласно закону Ампера, каждый элемент контура будет испытывать силу со стороны магнитного поля. Подвижная сторона контура будет испытывать результирующую силу . Позволим теперь подвижной стороне перемещаться под действием этой силы вправо с постоянной скоростью .

При этом, поскольку существует явление электромагнитной индукции (ведь у нас меняется магнитный поток через замкнутый контур), ток в контуре изменится, и станет . Соответственно изменится и результирующая сила, действующая на подвижную сторону. Она станет .

Эта сила за время совершит работу , равную:

Но согласно закону Ампера, эта сила равна:

Следовательно, выражение для работы примет вид:

т.е. ранее полученный результат.

Как и в случае неподвижных элементов контура, источником работы является источник тока, источник ЭДС.

В случае неподвижных элементов контура, вся работа, совершаемая источником ЭДС, превращается в тепло.

В случае движущейся стороны, ленц-джоулево тепло будет также выделяться, но другое, поскольку . И, кроме того, будет совершена еще и механическая работа , выражение для которой мы определили выше.

Согласно закону сохранения энергии, теперь мы должны записать:

Отсюда получим:

Сравнивая получившееся выражение с законом Ома для полной цепи ‑ , приходим к выводу, что результирующая ЭДС, действующая в контуре, равна:

Таким образом, мы получаем, что ЭДС индукции равна:

где знак «‑» отражает правило Ленца.

Электронный механизм возникновения ЭДС индукции

Опять рассмотрим вышеприведенный контур, изображенный на рис. 3. Но теперь будем полагать, что источника нет. Т.е. существует контур с подвижной стороной в магнитном поле (см. рис. 3).

В отличие от предыдущего случая, будем перемещать подвижную сторону с некоторой скоростью . При этом на заряды внутри подвижной стороны (ведь это проводник и в нем существуют подвижные заряды), будет действовать сила Лоренца, направленная вдоль проводника:

Сравнивая это выражение с выражением для силы, действующей на заряд, помещенный в электрическое поле напряженностью ‑ , приходим к выводу, что действие этой силы Лоренца эквивалентно действию электрического поля с напряженностью



Это поле не электростатического происхождения, поэтому его циркуляция по замкнутому контуру отлична от нуля и даст величину ЭДС индукции:

Т.е., с точностью до знака получили тот же самый результат.

Остановимся на некоторых моментах.

1. Выше мы говорили, что действие силы Лоренца эквивалентно действию электрического поля.

Это не просто поверхностная аналогия. Это заключение имеет глубокий физический смысл.

В самом деле, перейдем в систему отсчета, связанную с движущимся проводником. Тогда мы скажем, что силы Лоренца нет, поскольку заряды в этой системе отсчета покоятся. Но в то же время существует электрическое поле, под действием которого заряды движутся.

При этом мы должны будем признать, что это электрическое поле обусловлено движущимся магнитным полем (ведь в этой системе отсчета магнитное поле движется).

Таким образом, уже сейчас мы приходим к выводу, что изменяющееся магнитное поле порождает электрическое поле. Т.е приходим к представлению о взаимосвязи полей и и о их неразрывном единстве.

2. Ранее мы подчеркивали и говорили о том, что сила Лоренца работы не производит.

В то же время здесь мы считаем ЭДС индукции, которая является мерой работы, исходя из выражения для силы Лоренца. В чем же дело?

Дело в том, что в расчетах мы брали не всю силу Лоренца, а только продольную (вдоль движущейся стороны) составляющую силы: . В действительности, поскольку заряды движутся вдоль проводника со скоростью упорядоченного движения (электрический ток), существует еще поперечная составляющая силы Лоренца (которая не сказывается на ЭДС, см. рис. 4). Следовательно, полная сила Лоренца будет равна:

Выражение для работы этой силы можно представить как:

Второе слагаемое взято со знаком минус, поскольку сила направлена против скорости, против перемещения. Подставив выражения для сил и в выражение для работы , получим.

ЭДС - это аббревиатура трех слов: электродвижущая сила. ЭДС индукции () появляется в проводящем теле, которое находится в переменном магнитном поле. Если проводящим телом является, например, замкнутый контур, то в нем течет электрический ток, который называют током индукции.

Закон Фарадея для электромагнитной индукции

Основным законом, который используют при расчетах, связанных с электромагнитной индукцией является закон Фарадея. Он говорит о том, что электродвижущая сила электромагнитной индукции в контуре равна по величине и противоположна по знаку скорости изменения магнитного потока () сквозь поверхность, которую ограничивает рассматриваемый контур:

Закон Фарадея (1) записан для системы СИ. Надо учитывать, что из конца вектора нормали к контуру обход контура должен проходить против часовой стрелки. Если изменение потока происходит равномерно, то ЭДС индукции находят как:

Магнитный поток, который охватывает проводящий контур, может изменяться в связи с разными причинами. Это может быть и изменяющееся во времени магнитное поле и деформация самого контура, и перемещение контура в поле. Полная производная от магнитного потока по времени учитывает действие всех причин.

ЭДС индукции в движущемся проводнике

Допустим, что проводящий контур перемещается в постоянном магнитном поле. ЭДС индукции возникает во всех частях контура, которые пересекают силовые линии магнитного поля. При этом, результирующая ЭДС, появляющаяся в контуре будет равна алгебраической сумме ЭДС каждого участка. Возникновение ЭДС в рассматриваемом случае объясняют тем, что на любой свободный заряд, который движется вместе с проводником в магнитном поле, будет действовать сила Лоренца. При воздействии сил Лоренца заряды движутся и образуют в замкнутом проводнике ток индукции.

Рассмотри случай, когда в однородном магнитном поле находится прямоугольная проводящая рамка (рис.1). Одна сторона рамки может двигаться. Длина этой стороны равна l. Это и будет наш движущийся проводник. Определим, как можно вычислить ЭДС индукции, в нашем проводнике, если он перемещается со скоростью v. Величина индукции магнитного поля равна B. Плоскость рамки перпендикулярна вектору магнитной индукции. Выполняется условие .

ЭДС индукции в рассматриваемом нами контуре будет равна ЭДС, которая возникает только в подвижной его части. В стационарных частях контура в постоянном магнитном поле индукции нет.

Для нахождения ЭДС индукции в рамке воспользуемся основным законом (1). Но для начала определимся с магнитным потоком. По определению поток магнитной индукции равен:

где , так как по условию плоскость рамки перпендикулярна направлению вектора индукции поля, следовательно, нормаль к рамке и вектор индукции параллельны. Площадь, которую ограничивает рамка, выразим следующим образом:

где - расстояние, на которое перемещается движущийся проводник. Подставим выражение (2), с учетом (3) в закон Фарадея, получим:

где v - скорость движения подвижной стороны рамки по оси X.

Если угол между направлением вектора магнитной индукции () и вектором скорости движения проводника () составляет угол , то модуль ЭДС в проводнике можно вычислить при помощи формулы:

Примеры решения задач

ПРИМЕР 1

Задание Получите выражение для определения модуля ЭДС индукции в проводнике, длиной l, который движется в однородном магнитном поле, используя выражение для силы Лоренца. Проводник на рис.2 движется с постоянной скоростью , параллельно самому себе. Вектор перпендикулярен проводнику и составляет угол с направлением .

Решение Рассмотрим силу, с которой магнитное поле действует на заряженную частицу, движущуюся со скоростью , мы получим:

Работа силы Лоренца на пути l составит:

ЭДС индукции можно определить как работу по перемещению единичного положительного заряда:

Ответ

ПРИМЕР 2

Задание Изменение магнитного потока через контур проводника, имеющего сопротивление Ом за время равное с, составило величину Вб. Какова сила тока при этом в проводнике, если изменение магнитного потока можно считать равномерным?
Решение При равномерном изменении магнитного потока основной закон электромагнитной индукции можно записать как:

Электромагнитная индукция – генерирование электротоков магнитными полями, изменяющимися во времени. Открытие Фарадеем и Генри этого феномена ввело определенную симметрию в мир электромагнетизма. Максвеллу в одной теории удалось собрать знания об электричестве и магнетизме. Его исследования предсказывали существование электромагнитных волн перед экспериментальными наблюдениями. Герц доказал их существование и открыл человечеству эпоху телекоммуникаций.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/1-14-210x140..jpg 614w" sizes="(max-width: 600px) 100vw, 600px">

Эксперименты Фарадея

Законы Фарадея и Ленца

Электрические токи создают магнитные эффекты. А возможно ли, чтобы магнитное поле порождало электрическое? Фарадей обнаружил, что искомые эффекты возникают вследствие изменения МП во времени.

Когда проводник пересекается переменным магнитным потоком, в нем индуцируется электродвижущая сила, вызывающая электроток. Системой, которая генерирует ток, может быть постоянный магнит или электромагнит.

Явление электромагнитной индукции регулируется двумя законами: Фарадея и Ленца.

Закон Ленца позволяет охарактеризовать электродвижущую силу относительно ее направленности.

Важно! Направление индуцированной ЭДС такое, что вызванный ею ток стремится противостоять создающей его причине.

Фарадей заметил, что интенсивность индуцированного тока растет, когда быстрее изменяется число силовых линий, пересекающих контур. Другими словами, ЭДС электромагнитной индукции находится в прямой зависимости от скорости движущегося магнитного потока.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-10-768x454..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

ЭДС индукции

Формула ЭДС индукции определена как:

Е = — dФ/dt.

Знак «-» показывает, как полярность индуцированной ЭДС связана со знаком потока и меняющейся скоростью.

Получена общая формулировка закона электромагнитной индукции, из которой можно вывести выражения для частных случаев.

Движение провода в магнитном поле

Когда провод длиной l движется в МП, имеющем индукцию В, внутри него будет наводиться ЭДС, пропорциональная его линейной скорости v. Для расчета ЭДС применяется формула:

  • в случае движения проводника перпендикулярно направлению магнитного поля:

Е = — В x l x v;

  • в случае движения под другим углом α:

Е = — В x l x v х sin α.

Индуцированная ЭДС и ток будут направлены в сторону, которую находим, пользуясь правилом правой руки: расположив руку перпендикулярно силовым линиям магнитного поля и указывая большим пальцем в сторону перемещения проводника, можно узнать направление ЭДС по оставшимся четырем распрямленным пальцам.

Jpg?x15027" alt="Перемещение провода в МП" width="600" height="429">

Перемещение провода в МП

Вращающаяся катушка

Работа генератора электроэнергии основана на вращении контура в МП, имеющего N витков.

ЭДС индуцируется в электроцепи всегда, когда магнитный поток ее пересекает, в соответствии с определением магнитного потока Ф = B x S х cos α (магнитная индукция, умноженная на поверхностную площадь, через которую проходит МП, и косинус угла, образованного вектором В и перпендикулярной линией к плоскости S).

Из формулы следует, что Ф подвержен изменениям в следующих случаях:

  • меняется интенсивность МП – вектор В;
  • варьируется площадь, ограниченная контуром;
  • изменяется ориентация между ними, заданная углом.

В первых опытах Фарадея индуцированные токи были получены путем изменения магнитного поля В. Однако можно индуцировать ЭДС, не двигая магнит или не меняя ток, а просто вращая катушку вокруг своей оси в МП. В данном случае магнитный поток меняется из-за изменения угла α. Катушка при вращении пересекает линии МП, возникает ЭДС.

Если катушка вращается равномерно, это периодическое изменение приводит к периодическому изменению магнитного потока. Или количество силовых линий МП, пересекаемых каждую секунду, принимает равные значения с равными интервалами времени.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-10-768x536..jpg 900w" sizes="(max-width: 600px) 100vw, 600px">

Вращение контура в МП

Важно! Наведенная ЭДС меняется вместе с ориентацией с течением времени от положительной до отрицательной и наоборот. Графическое представление ЭДС представляет собой синусоидальную линию.

Для формулы ЭДС электромагнитной индукции применяется выражение:

Е = В х ω х S x N x sin ωt, где:

  • S – площадь, ограниченная одним витком или рамкой;
  • N – количество витков;
  • ω – угловая скорость, с которой вращается катушка;
  • В – индукция МП;
  • угол α = ωt.

На практике в генераторах переменного тока часто катушка остается неподвижной (статор), а электромагнит вращается вокруг нее (ротор).

ЭДС самоиндукции

Когда через катушку проходит переменный ток, он генерирует переменное МП, обладающее изменяющимся магнитным потоком, индуцирующим ЭДС. Этот эффект называется самоиндукцией.

Поскольку МП пропорционально интенсивности тока, то:

где L – индуктивность (Гн), определяемая геометрическими величинами: количеством витков на единицу длины и размерами их поперечного сечения.

Для ЭДС индукции формула принимает вид:

Е = — L x dI/dt.

Взаимоиндукция

Если две катушки расположены рядом, то в них наводится ЭДС взаимоиндукции, зависящая от геометрии обеих схем и их ориентации относительно друг друга. Когда разделение цепей возрастает, взаимоиндуктивность снижается, так как уменьшается соединяющий их магнитный поток.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/5-5.jpg 680w" sizes="(max-width: 600px) 100vw, 600px">

Взаимоиндукция

Пусть имеется две катушки. По проводу одной катушки, обладающей N1 витками, протекает ток I1, создающий МП, проходящее через катушку с N2 витками. Тогда:

  1. Взаимоиндуктивность второй катушки относительно первой:

М21 = (N2 x F21)/I1;

  1. Магнитный поток:

Ф21 = (М21/N2) x I1;

  1. Найдем индуцированную ЭДС:

Е2 = — N2 x dФ21/dt = — M21x dI1/dt;

  1. Идентично в первой катушке индуцируется ЭДС:

Е1 = — M12 x dI2/dt;

Важно! Электродвижущая сила, вызванная взаимоиндукцией в одной катушке, всегда пропорциональна изменению электротока в другой.

Взаимную индуктивность можно признать равной:

М12 = М21 = М.

Соответственно, E1 = — M x dI2/dt и E2 = M x dI1/dt.

М = К √ (L1 x L2),

где К – коэффициент связи между двумя индуктивностями.

Явление взаимоиндукции используется в трансформаторах – электроаппаратах, позволяющих изменить значение напряжения переменного электротока. Аппарат представляет собой две катушки, намотанные вокруг одного сердечника. Ток, присутствующий в первой, создает меняющееся МП в магнитопроводе и электроток в другой катушке. Если количество витковых оборотов первой обмотки меньше, чем другой, напряжение увеличивается, и наоборот.



Похожие статьи