Давление насыщенного пара. Методическая разработка (10 класс) на тему: Насыщенный пар

Давление насыщенного пара жидкости, состоящей из сильно взаимодействующих друг с другом молекул, меньше, чем давление насыщенного пара жидкости, состоящей из слабо взаимодействующих молекул. Тмг 1600 6 0,4 - трансформатор тмг tmtorg.ru .

Точкой росы называют температуру, при кото­рой пар, находящийся в воздухе, становится насы­щенным. При достижении точки росы в воздухе или на предметах, с которыми он соприкасается, начи­нается конденсация водяного пара.

Насыщенный пар в отли­чие от ненасыщенного не подчиняется законам иде­ального газа.

Так, давление насыщенного пара не за­висит от объема, но зависит от температуры (приближенно описывается уравнением состояния идеального газа p = nkT). Эта зависимость не может быть выражена простой форму­лой, поэтому на основе экспериментального изучения зависимости давления насыщенного пара от темпера­туры составлены таблицы, по которым можно опре­делить его давление при различных температурах.

С увеличением температуры давление насыщенного пара растет быстрее, чем идеального газа. При нагревании жидкости в закрытом сосуде давление пара растет не только из-за повышения температуры, но и из-за увеличения концентрации молекул (массы пара) вследствие испарения жидкости. С идеальным газом этого не происходит. Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет прямо пропорционально температуре.

Вследствие постоянного испарения воды с по­верхностей водоемов, почвы и растительного покрова, а также дыхания человека и животных в атмосфере всегда содержится водяной пар. Поэтому атмосфер­ное давление представляет собой сумму давления су­хого воздуха и находящегося в нем водяного пара. Давление водяного пара будет максимальным при насыщении воздуха паром.

ВЛАЖНОСТЬ ВОЗДУХА(уч.10кл.стр.294-295,уч.8кл.стр.46-47)

Понятие влажности воздуха и ее зависимость от температуры

Определение относительной влажности. Формула. Единицы измерения.

Точка росы

Определение относительной влажности через давление насыщенных паров. Формула

Гигрометры и психрометры

При одной и той же температуре содержание в воздухе водяного пара может изменяться в широких пределах: от нуля (абсолютно сухой воздух) до максимально возможного (насыщенный пар)

Причем суточный ход относительной влажности обратен суточному ходу температуры. Днем, с возрастанием температуры, и следовательно, с ростом давления насыщения относительная влаж­ность убывает, а ночью возрастает. Одно и то же ко­личество водяного пара может либо насыщать, либо не насыщать воздух. Понижая температуру воздуха, можно довести находящийся в нем пар до насыще­ния.

Парциальное давление водяного пара (или упругость водяного пара)

Атмосферный воздух представляет смесь различных газов и водяного пара.

Давление, которое производил бы водяной пар, если бы все остальные газы отсутствовали, называют парциальным давлением водяного пара.

Парциально давление водяного пара принимают за один из показателей влажности воздуха.

Выражают в единицах давления – Па или в мм.рт.ст.

Абсолютная влажность воздуха

По­скольку давление пара пропорционально концентра­ции молекул, можно определить абсолютную влаж­ность как плотность водяного пара, находящегося в воздухе при данной температуре, выраженную в ки­лограммах на метр кубический.

Абсолютная влажность показывает, сколько граммов водяного пара содержится в 1м3 воздуха при данных условия.

Обозначение - ρ

Это – плотность водяного пара.

Относительная влажность воздуха

По парциальному давлению водяного пара нельзя судить о том, насколько он близок к насыщению. А именно от этого зависит интенсивность испарения воды. Поэтому вводят величину, показывающую, насколько водяной пар при данной температуре близок к насыщению – относительную влажность.

Относительной влажностью воздуха φ называют отношение парциального давления p водяного пара, содержащегося в воздухе при данной температуре, к давлению p0 насыщенного пара при той же температуре, выраженной в процентах:

Относительная влажность воздуха – процентное отношение концентрации водяного пара в воздухе и концентрации насыщенного пара при той же температуре

Концентрация насыщенного пара является максимальной концентрацией, которую может иметь пар над жидкостью. Следовательно, относительная влажность может меняться от 0 до nн.п

Чем меньше относительная влажность, тем суше воздух и тем интенсивней происходит испарение.

Для оптимального теплообмена человека оптимальна относительная влажность 25% при +20-25оС. При более высокой температуре оптимальна влажность 20%

Так как концентрация пара связана с давлением (p = nkT), то относительную влажность можно выразить как процентное отношение давления пара в воздухе и давлению насыщенного пара при той же температуре:

Большинство явлений, наблюдаемых в приро­де, например быстрота испарения, высыхание раз­личных веществ, увядание растений, зависит не от количества водяного пара в воздухе, а от того, на­сколько это количество близко к насыщению, т. е. от относительной влажности, которая характеризует степень насыщения воздуха водяным паром.

При низкой температуре и высокой влажности повышается теплопередача и человек подвергается переохлаждению. При высоких температурах и влажности теплопередача, наоборот, резко сокра­щается, что ведет к перегреванию организма. Наибо­лее благоприятной для человека в средних климати­ческих широтах является относительная влажность 40-60%.

Если влажный воздух охлаждать, то при некоторой температуре находящийся в нем пар можно довести до насыщения. При дальнейшем охлаждении водяной пар начнет конденсироваться в виде росы. Появляется туман, выпадает роса.

Перейти на страницу:

>>Физика: Зависимость давления насыщенного пара от температуры. Кипение

Жидкость не только испаряется. При некоторой температуре она кипит.
Зависимость давления насыщенного пара от температуры . Состояние насыщенного пара, как показывает опыт (мы говорили об этом в предыдущем параграфе), приближенно описывается уравнением состояния идеального газа (10.4), а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщенного пара не зависит от объема, то, следовательно, оно зависит только от температуры.
Однако зависимость р н.п. от Т , найденная экспериментально, не является прямо пропорциональной, как у идеального газа при постоянном объеме. С увеличением температуры давление реального насыщенного пара растет быстрее, чем давление идеального газа (рис.11.1 , участок кривой АВ ). Это становится очевидным, если провести изохоры идеального газа через точки А и В (штриховые прямые). Почему это происходит?

При нагревании жидкости в закрытом сосуде часть жидкости превращается в пар. В результате согласно формуле (11.1) давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличения концентрации молекул (плотности) пара . В основном увеличение давления при повышении температуры определяется именно увеличением концентрации. Главное различие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар, или, напротив, пар частично конденсируется. С идеальным газом ничего подобного не происходит.
Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорционально абсолютной температуре (см. рис.11.1 , участок кривой ВС ).
. По мере увеличения температуры жидкости интенсивность испарения увеличивается. Наконец, жидкость начинает кипеть. При кипении по всему объему жидкости образуются быстро растущие пузырьки пара, которые всплывают на поверхность. Температура кипения жидкости остается постоянной. Это происходит потому, что вся подводимая к жидкости энергия расходуется на превращение ее в пар. При каких условиях начинается кипение?
В жидкости всегда присутствуют растворенные газы, выделяющиеся на дне и стенках сосуда, а также на взвешенных в жидкости пылинках, которые являются центрами парообразования. Пары жидкости, находящиеся внутри пузырьков, являются насыщенными. С увеличением температуры давление насыщенных паров возрастает и пузырьки увеличиваются в размерах. Под действием выталкивающей силы они всплывают вверх. Если верхние слои жидкости имеют более низкую температуру, то в этих слоях происходит конденсация пара в пузырьках. Давление стремительно падает, и пузырьки захлопываются. Захлопывание происходит настолько быстро, что стенки пузырька, сталкиваясь, производят нечто вроде взрыва. Множество таких микровзрывов создает характерный шум. Когда жидкость достаточно прогреется, пузырьки перестанут захлопываться и всплывут на поверхность. Жидкость закипит. Понаблюдайте внимательно за чайником на плите. Вы обнаружите, что перед закипанием он почти перестает шуметь.
Зависимость давления насыщенного пара от температуры объясняет, почему температура кипения жидкости зависит от давления на ее поверхность. Пузырек пара может расти, когда давление насыщенного пара внутри него немного превосходит давление в жидкости, которое складывается из давления воздуха на поверхность жидкости (внешнее давление) и гидростатического давления столба жидкости.
Обратим внимание на то, что испарение жидкости происходит при температурах, меньших температуры кипения, и только с поверхности жидкости, при кипении образование пара происходит по всему объему жидкости.
Кипение начинается при температуре, при которой давление насыщенного пара в пузырьках сравнивается с давлением в жидкости.
Чем больше внешнее давление, тем выше температура кипения . Так, в паровом котле при давлении, достигающем 1,6 10 6 Па, вода не кипит и при температуре 200°С. В медицинских учреждениях в герметически закрытых сосудах - автоклавах (рис.11.2 ) кипение воды также происходит при повышенном давлении. Поэтому температура кипения жидкости значительно выше 100°С. Автоклавы применяют для стерилизации хирургических инструментов и др.

И наоборот, уменьшая внешнее давление, мы тем самым понижаем температуру кипения . Откачивая насосом воздух и пары воды из колбы, можно заставить воду кипеть при комнатной температуре (рис.11.3 ). При подъеме в горы атмосферное давление уменьшается, поэтому уменьшается температура кипения. На высоте 7134 м (пик Ленина на Памире) давление приближенно равно 4 10 4 Па (300 мм рт. ст.). Вода кипит там примерно при 70°С. Сварить мясо в этих условиях невозможно.

У каждой жидкости своя температура кипения, которая зависит от давления ее насыщенного пара. Чем выше давление насыщенного пара, тем ниже температура кипения жидкости, так как при меньших температурах давление насыщенного пара становится равным атмосферному . Например, при температуре кипения 100°С давление насыщенных паров воды равно 101 325 Па (760 мм рт. ст.), а паров ртути - всего лишь 117 Па (0,88 мм рт. ст.). Кипит ртуть при температуре 357°С при нормальном давлении.
Жидкость закипает, когда давление ее насыщенного пара становится равно давлению внутри жидкости.

???
1. Почему температура кипения возрастает с увеличением давления?
2. Почему для кипения существенно повышение давления насыщенного пара в пузырьках, а не повышение давления имеющегося в них воздуха ?
3. Как заставить закипеть жидкость, охлаждая сосуд? (Вопрос этот непростой.)

Г.Я.Мякишев, Б.Б.Буховцев, Н.Н.Сотский, Физика 10 класс

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Если у вас есть исправления или предложения к данному уроку,

Молекулярно-кинетическая теория позволяет не только понять, почему вещество может находиться в газообразном, жидком и твердом состояниях, но и объяснить процесс перехода вещества из одного состояния в другое.

Испарение и конденсация. Количество воды или любой другой жидкости в открытом сосуде постепенно уменьшается. Происходит испарение жидкости, механизм которого был описан в курсе физики VII класса. При хаотическом движении некоторые молекулы приобретают столь большую кинетическую энергию, что покидают жидкость, преодолевая силы притяжения со стороны остальных молекул.

Одновременно с испарением происходит обратный процесс - переход части хаотически движущихся молекул пара в жидкость. Этот процесс называют конденсацией. Если сосуд открытый, то покинувшие жидкость молекулы могут и не возвратиться в

жидкость. В этих случаях испарение не компенсируется конденсацией и количество жидкости уменьшается. Когда поток воздуха над сосудом уносит образовавшиеся пары, жидкость испаряется быстрее, так как у молекулы пара уменьшается возможность вновь вернуться в жидкость.

Насыщенный пар. Если сосуд с жидкостью плотно закрыть, то убыль ее вскоре прекратится. При неизменной температуре система «жидкость - пар» придет в состояние теплового равновесия и будет находиться в нем сколь угодно долго.

В первый момент, после того как жидкость нальют в сосуд и закроют его, она будет испаряться и плотность пара над жидкостью - увеличиваться. Однако одновременно с этим будет расти число молекул, возвращающихся в жидкость. Чем больше плотность пара, тем большее число молекул пара возвращается в жидкость. В результате в закрытом сосуде при постоянной температуре в конце концов установится динамическое (подвижное) равновесие между жидкостью и паром. Число молекул, покидающих поверхность жидкости, будет равно числу молекул пара, возвращающихся за то же время в жидкость. Одновременно с процессом испарения происходит конденсация, и оба процесса в среднем компенсируют друг друга.

Пар, находящийся в динамическом равновесии со своей жидкостью, называют насыщенным паром. Это название подчеркивает, что в данном объеме при данной температуре не может находиться большее количество пара.

Если воздух из сосуда с жидкостью предварительно откачан, то над поверхностью жидкости будет находиться только насыщенный пар.

Давление насыщенного пара. Что будет происходить с насыщенным паром, если уменьшать занимаемый им объем, например сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержимого цилиндра постоянной?

При сжатии пара равновесие начнет нарушаться. Плотность пара в первый момент немного увеличивается, и из газа в жидкость начинает переходить большее число молекул, чем из жидкости в газ. Это продолжается до тех пор, пока вновь не установится равновесие и плотность, а значит, и концентрация молекул не примет прежнее значение. Концентрация молекул насыщенного пара, следовательно, не зависит от объема при постоянной температуре.

Так как давление пропорционально концентрации в соответствии с формулой то из независимости концентрации (или плотности) насыщенных паров от объема следует независимость давления насыщенного пара от занимаемого им объема.

Независимое от объема давление пара при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

При сжатии насыщенного пара все большая часть его переходит в жидкое состояние. Жидкость данной массы занимает меньший объем, чем пар той же массы. В результате обьем пара при неизменной его плотности уменьшается.

Мы много раз употребляли слова «газ» и «пар». Никакой принципиальной разницы между газом и паром нет, и эти слова в общем-то равноправны. Но мы привыкли к определенному, относительно небольшому интервалу температуры окружающей среды. Слово «газ» обычно применяют к тем веществам, давление насыщенного пара которых при обычных температурах выше атмосферного (например, углекислый газ). Напротив, о паре говорят тогда, когда при комнатной температуре давление насыщенного пара меньше атмосферного и вещество более устойчиво в жидком состоянии (например, водяной пар).

Независимость давления насыщенного пара от объема установлена на многочисленных экспериментах по изотермическому сжатию пара, находящегося в равновесии со своей жидкостью. Пусть вещество при больших объемах находится в газообразном состоянии. По мере изотермического сжатия плотность и давление его увеличиваются (участок изотермы АВ на рисунке 51). При достижении давления начинается конденсация пара. В дальнейшем при сжатии насыщенного пара давление не меняется до тех пор, пока весь пар не обратится в жидкость (прямая ВС на рисунке 51). После этого давление при сжатии начинает резко возрастать (отрезок кривой так как жидкости мало сжимаемы.

Изображенная на рисунке 51 кривая носит название изотермы реального газа.

Процессы испарения и конденсации идут непрерывно и параллельно друг другу.

В открытом сосуде количество жидкости со временем уменьшается, т.к. испарение преобладает над конденсацией.

Пар, который находится над поверхностью жидкости, когда испарение преобладает над конденсацией или пар при отсутствии жидкости, называется ненасыщенным.

В герметически закрытом сосуде уровень жидкости со временем не изменяется, т.к. испарение и конденсация компенсируют друг друга: сколько молекул вылетает из жидкости, столько же их за тоже время возвращается в неё, наступает динамическое (подвижное) равновесие между паром и его жидкостью.

Пар, который находится в динамическом равновесии со своей жидкостью, называется насыщенным.

При данной температуре насыщенный пар какой-либо жидкости имеет наибольшую плотность ( ) и создаёт максимальное давление ( ), которое может иметь пар этой жидкости при этой температуре.

Давление и плотность насыщенного пара при одной и той же температуре зависит от рода вещества: большее давление создаёт насыщенный пар той жидкости, которая быстрее испаряется. Например, и

Свойства ненасыщенных паров: Ненасыщенные пары подчиняются газовым законам Бойля – Мариотта, Гей-Люссака, Шарля, к ним можно применять уравнение состояния идеального газа.

Свойства насыщенных паров: 1. При неизменном объёме с возрастанием температуры давление насыщенного пара увеличивается, но не прямо пропорционально (закон Шарля не выполняется), давление растёт быстрее, чем у идеального газа. , при возрастании температуры () , увеличивается масса пара, а поэтому возрастает концентрация молекул пара () и давление насыщенного пара растает по двум причинам (

3 1 – ненасыщенный пар (идеальный газ);

2 2 – насыщенный пар; 3 – ненасыщенный пар,

1 полученный из насыщенного пара в том же

Объёме при нагревании.

2. Давление насыщенного пара при неизменной температуре не зависит от занимаемого им объёма.

С увеличением объёма масса пара увеличивается, а масса жидкости уменьшается (часть жидкости переходит в пар), при уменьшении объёма пара становится меньше, а жидкости больше (часть пара переходит в жидкость), плотность же и концентрация молекул насыщенного пара остаются постоянными, следовательно, и давление остаётся постоянным ().


жидкость

(насыщ. пар + жидкость )

Ненасыщ. пар

Насыщенные пары не подчиняются газовым законам Бойля – Мариотта, Гей-Люссака, Шарля, т.к. масса пара в процессах не остаётся постоянной, а все газовые законы получены для неизменной массы. К насыщенному пару можно применять уравнение состояния идеального газа.

Итак, насыщенный пар можно перевести в ненасыщенный пар, либо нагревая его при постоянном объёме, либо увеличивая его объём при постоянной температуре. Ненасыщенный пар можно перевести в насыщенный пар, либо охлаждая его при постоянном объёме, либо сжимая его при постоянной температуре.

Критическое состояние

Наличие свободной поверхности у жидкости даёт возможность указать, где находится жидкая фаза вещества, а где газообразная. Резкое различие между жидкостью и её паром объясняется тем, что плотность жидкости во много раз больше, чем у пара. Если нагревать жидкость в герметически закрытом сосуде, то вследствие расширения её плотность будет уменьшаться, а плотность пара над ней увеличиваться. Это означает, что различие между жидкостью и её насыщенным паром сглаживается и при достаточно высокой температуре исчезает совсем. Температура, при которой исчезают различия в физических свойствах между жидкостью и её насыщенным паром, и их плотности становятся одинаковыми, называется критической температурой.

Критическая точка

Для образования жидкости из газа средняя потенциальная энергия притяжения молекул должна превышать их среднюю кинетическую энергию.

Критическая температура максимальная температура, при которой пар превращается в жидкость. Критическая температура зависит от потенциальной энергии взаимодействия молекул и поэтому различна для разных газов. Из-за сильного взаимодействия молекул воды водяной пар можно превратить в воду даже при температуре . В то же время сжижение азота происходит лишь при температуре, меньшей =-147˚ , т.к. молекулы азота слабо взаимодействуют между собой.

Другим макроскопическим параметром, влияющим на переход пар - жидкость, является давление. С ростом внешнего давления при сжатии газа уменьшается среднее расстояние между частицами, возрастает сила притяжения между ними и соответственно средняя потенциальная энергия их взаимодействия.

Давление насыщенного пара при его критической температуре называется критическим . Это наибольшее возможное давление насыщенного пара данного вещества.

Состояние вещества с критическими параметрами называется критическим (критическая точка). У каждого вещества свои критические температура и давление.

В критическом состоянии обращаются в нуль удельная теплота парообразования и коэффициент поверхностного натяжения жидкости. При температурах выше критической, даже при очень больших давлениях невозможно превращение газа в жидкость, т.е. выше критической температуры жидкость не может существовать. При сверхкритических температурах возможно только парообразное состояние вещества.

Сжижение газов возможно лишь при температурах ниже критической температуры. Для сжижения газы охлаждают до критической температуры, например, при адиабатном расширении, а затем изотермически сжимают.

Кипение

Внешне явление выглядит так: со всего объёма жидкости к поверхности поднимаются быстро растущие пузырьки, на поверхности они лопаются, и пар выбрасывается в окружающую среду.

МКТ объясняет кипение так: в жидкости всегда есть пузырьки воздуха, в них из жидкости происходит испарение. Замкнутый объём пузырьков оказывается заполненным не только воздухом, но и насыщенным паром. Давление насыщенного пара в них при нагревании жидкости растёт быстрее, чем давление воздуха. Когда в достаточно нагретой жидкости давление насыщенного пара в пузырьках становится больше внешнего давления, они увеличиваются в объёме, и выталкивающая сила, превосходящая их силу тяжести, поднимает пузырьки к поверхности. Всплывшие пузырьки начинают лопаться, когда при определённой температуре давление насыщенного пара в них превосходит давление над жидкостью. Температура жидкости, при которой давление её насыщенного пара в пузырьках равно или превышает внешнее давление на жидкость, называется температурой кипения.

Температура кипения различных жидкостей различна , т.к. давление насыщенного пара в их пузырьках сравнивается с одним и тем же внешним давлением при разных температурах. Например, давление насыщенного пара в пузырьках равно нормальному атмосферному давлению у воды при 100˚С, у ртути при 357˚С, у спирта при 78˚С, у эфира при 35˚С.

Температура кипения в процессе кипения остаётся постоянной, т.к. всё тепло, которое подводится к нагреваемой жидкости, тратится на парообразование.

Температура кипения зависит от внешнего давления на жидкость: с увеличением давления температура повышается; с уменьшением давления температура понижается. Например, на высоте 5км над уровнем моря, где давление в 2 раза ниже атмосферного, температура кипения воды 83˚С, в котлах паровых машин, где давление пара 15 атм. (), температура воды около 200˚С.

Влажность воздуха

В воздухе всегда есть водяной пар, поэтому можно говорить о влажности воздуха, которая характеризуется следующими величинами:

1.Абсолютная влажность – это плотность водяного пара, находящегося в воздухе ( или давление, которое этот пар создаёт ( .

Абсолютная влажность не даёт представление о степени насыщения воздуха водяными парами. Одно и то же количество водяного пара при разной температуре создаёт разное ощущение влажности.

2.Относительная влажность - это отношение плотности (давления) водяного пара, содержащегося в воздухе при данной температуре, к плотности (давлению) насыщенного пара при той же температуре : или

– абсолютная влажность при данной температуре; - плотность, давление насыщенного пара при той же температуре. Плотность и давление насыщенного водяного пара при любой температуре можно найти в таблице. Из таблицы видно, чем выше температура воздуха, тем больше должны быть плотность и давление водяного пара в воздухе, чтобы он был насыщенным.

Зная относительную влажность, можно понять, на сколько процентов водяной пар в воздухе при данной температуре далёк от насыщения. Если пар в воздухе насыщенный, то . Если , то до состояния насыщения в воздухе не хватает пара.

О том, что пар в воздухе становится насыщенным, судят по появлению влаги в виде тумана, росы. Температура, при которой водяной пар в воздухе становится насыщенным, называется точкой росы.

Пар в воздухе можно сделать насыщенным, если добавить пары за счёт дополнительного испарения жидкости, не меняя температуры воздуха, или при имеющемся количестве пара в воздухе понизить его температуру.

Нормальная относительная влажность, наиболее благоприятная для человека 40 - 60%. Большое значение имеет знание влажности в метеорологии для предсказания погоды. В ткацком, кондитерском производстве для нормального течения процесса необходима определённая влажность. Хранение произведений искусства и книг требует поддержания влажности воздуха на необходимом уровне.

Приборы для определения влажности:

1. Конденсационный гигрометр (позволяет определить точку росы).

2. Волосной гигрометр (принцип действия основан на зависимости длины обезжиренного волоса от влажности) измеряет относительную влажность в процентах.

3. Психрометр состоит из двух термометров сухого и увлажнённого. Резервуар увлажнённого термометра обмотан тканью, опущенной в воду. За счёт испарения с ткани температура увлажнённого ниже, чем сухого. Разность показаний термометров зависит от влажности окружающего воздуха: чем суше воздух, тем интенсивнее испарение с ткани, тем больше разность показаний термометров и наоборот. Если влажность воздуха 100%, то показания термометров одинаковые, т.е. разность показаний 0. Для определения влажности с помощью психрометра используют психрометрическую таблицу.

Плавление и кристаллизация

При плавлении твёрдого тела увеличивается расстояние между частицами, образующими кристаллическую решётку, и происходит разрушение самой решётки. На процесс плавления необходимо затрачивать энергию. При нагревании твёрдого тела возрастает кинетическая энергия колеблющихся молекул и соответственно амплитуда их колебаний. При определённой температуре, называемой температурой плавления, нарушается порядок в расположении частиц в кристаллах, кристаллы теряют свою форму. Вещество плавится, переходя из твёрдого состояния в жидкое состояние.

При кристаллизации происходит сближение молекул, которые образуют кристаллическую решётку. Кристаллизация может происходить только тогда, когда жидкость отдаёт энергию. При охлаждении расплавленного вещества средняя кинетическая энергия и скорость молекул уменьшаются. Силы притяжения могут удерживать частицы около положения равновесия. При определённой температуре, называемой температурой отвердевания (кристаллизации), все молекулы оказываются в положении устойчивого равновесия, их расположение становится упорядоченным – образуется кристалл.

Плавление твёрдого тела происходит при той же температуре, при которой это вещество отвердевает

Каждое вещество имеет свою температуру плавления. Например, температуры плавления у гелия -269,6˚С, у ртути -38,9˚С, у меди 1083˚С.

Во время процесса плавления температура остаётся постоянной. Подводимое извне количество теплоты идёт на разрушение кристаллической решётки.

Во время процесса отвердевания, не смотря на то, что тепло отводится, температура не меняется. Выделяющаяся при кристаллизации энергия расходуется на поддержание постоянной температуры.

Пока всё вещество не расплавится или всё вещество не отвердеет, т.е. пока существуют совместно твёрдая и жидкая фазы вещества, температура не изменяется.

Тв.+жид. жид.+тв.

, где – количество теплоты, - количество теплоты, необходимое для расплавления вещества выделяемое при кристаллизации вещества массой массой

- удельная теплота плавления количество теплоты, необходимое для плавления вещества массой 1кг при температуре плавления.

Какое количество теплоты затрачивается при плавлении определённой массы вещества, такое же количество теплоты выделяется при кристаллизации этой массы.

Называется также удельной теплотой кристаллизации .

При температуре плавления внутренняя энергия вещества в жидком состоянии больше внутренней энергии такой же массы вещества в твёрдом состоянии.

У большого числа веществ объём при плавлении увеличивается, а плотность уменьшается. При отвердевании наоборот, объём уменьшается, а плотность увеличивается. Например, кристаллики твёрдого нафталина тонут в жидком нафталине.

Некоторые вещества, например, висмут, лёд, галлий, чугун и др. при плавлении сжимаются, а при отвердевании расширяются. Эти отклонения от общего правила объясняются особенностями строения кристаллических решёток. Поэтому вода оказывается плотнее льда, лёд плавает в воде. Расширение воды при замерзании ведёт к разрушению горных пород.

Изменение объёма металлов при плавлении и отвердевании имеет существенное значение в литейном деле.

Опыт показывает, что изменение внешнего давления на твёрдое вещество отражается на температуре плавления этого вещества . Для тех веществ, которые при плавлении расширяются, увеличение внешнего давления приводит к повышению температуры плавления, т.к. затрудняет процесс плавления. Если же вещества при плавлении сжимаются, то для них увеличение внешнего давления ведёт к понижению температуры плавления, т.к. помогает процессу плавления. Только очень большое увеличение давления заметно изменяет температуру плавления. Например, чтобы понизить температуру плавления льда на 1˚С, давление нужно повысить на 130 атм. Температуру плавления вещества при нормальном атмосферном давлении называют точкой плавления вещества.

И что будет происходить с насыщенным паром, если уменьшить занимаемый им объем? Например, если сжимать пар, находящийся в равновесии с жидкостью в цилиндре под поршнем, поддерживая температуру содержи­мого цилиндра постоянной.

При сжатии пара равновесие нач­нет нарушаться. Плотность пара в первый момент немного увеличится, и из газа в жидкость начнет переходить большее число молекул, чем из жидкости в газ. Ведь число молекул, покидающих жидкость в единицу времени, зависит только от температуры, и сжатие пара это число не меняет. Процесс продолжа­ется до тех пор, пока вновь не установится динамическое равно­весие и плотность пара, а значит, и концентрация его молекул не примут прежнее значение. Следова­тельно, концентрация молекул на­сыщенного пара при постоянной температуре не зависит от его объема.

Так как давление пропорциональ­но концентрации молекул (p = nkT ), то из этого определения следует, что давление насыщенного пара не зависит o т занимаемого им объема.

Давление пара , при котором жидкость находится в равновесии со своим паром, называют давлением насыщенного пара.

  • Ненасыщенный пар.

Мы много раз употребляли слова газ и пар. Никакой принципиальной разницы между газом и паром нет. Но если при неизменной температуре газ простым сжатием можно превратить в жидкость, то мы называем его паром, точнее, ненасыщенным паром.

  • Зависимость давления насыщен­ного пара от температуры.

Состояние насыщенного пара, как говорит опыт, приближенно описывается уравне­нием состояния идеального газа, а его давление определяется формулой

С ростом температуры давление растет. Так как давление насыщен­ ного пара не зависит от объема, оно зависит только от температуры.

Однако эта зависимость ро(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного пара растет быстрее, чем давление идеаль­ного газа (рис. 30, участок кривой АВ). Это становится особенно оче­видным, если провести изохору через точку А (пунктирная прямая) Почему это происходит?

Однако эта зависимость р(Т), найденная экспериментально, не яв­ляется прямо пропорциональной, как у идеального газа при постоян­ном объеме. С увеличением темпера­туры давление насыщенного парабыстрее, чем давление идеаль­ного газа (рис. 30).Почему это происходит?

При нагревании жидкости в за­крытом сосуде часть жидкости превращается в пар. В результате согласно формуле
давление насыщенного пара растет не только вследствие повышения температуры жидкости, но и вследствие увеличе­ ния концентрации молекул (плот­ ности) пара . В основном увеличение давления при повышении температуры определяется именно увели­чением концентрации. Главное раз­личие в поведении идеального газа и насыщенного пара состоит в том, что при изменении температуры пара в закрытом сосуде (или при изменении объема при постоянной температуре) меняется масса пара. Жидкость частично превращается в пар или, напротив, пар частично конденсируется. Когда вся жидкость испарится, пар при дальнейшем нагревании перестанет быть насыщенным и его давление при постоянном объеме будет возрастать прямо пропорцио­нально абсолютной температуре (см. рис. 30, участок ВС).



Похожие статьи