Излучение абсолютно черного тела. Закон Кирхгофа

Для записи законов излучения и поглощения вводится понятие абсолютно черного тела. Абсолютно черным телом называется воображаемое тело, которое поглощает всю падающую на него энергию при любой температуре. Испускательная и поглощательная способности связаны между собой, эта связь выражается законом Кирхгофа .

Для всех тел при данной температуре отношение испускаемой способности к поглощательной способности есть величина постоянная и равная испускательной способности абсолютно черного тела.

R зависит от температуры, эта зависимость выражается законом Стефана-Больцмана:

Постоянная Стефана-Больцмана

Зависимость длины волны излучения от температуры тела выражается законом Вина .

Длина волны, соответствующая max излучению абсолютно черного тела, обратно пропорциональна его термодинамической температуре.

b=, постоянная Вина

Вопросы для самоконтроля

1. Что называется фотоэффектом?

2. Сформулировать законы внешнего фотоэффекта.

3. Что называется люминесценцией?

4. В чем заключается правило Стокса?

5. Записать массу и импульс фотона.

6. Что называется абсолютно черным телом?

7. Сформулировать законы излучения абсолютно черного тела.

8. В чем заключается двойственность природы света?

9. Сформулировать основные законы геометрической оптики.

10. В чем заключается явление дифракции?

11. В чем заключается явление интерференции?

12. Какой свет называется поляризованным?

13. Что называется дисперсией света?

14. Назвать основные фотометрические характеристики.

Закон Кирхгофа приводит к интересному следствию. Тела, обменивающиеся теплом посредством излучения, получают (при данных и одну и ту же интенсивность электромагнитных волн от своих соседей, независимо от материала и свойств тела. Для каждой длины волны (или частоты, это одно и то же) и для каждой температуры опыт приводит к универсальной величине Таким образом, существует универсальная функция функция частоты излучения и температуры, характеризующая процесс теплообмена излучением.

Функции можно придать наглядное содержание. Рассмотрим тело, поглощающее 100% падающей на него энергии при всех длинах волн. Для такого абсолютно черного тела и

Функция есть испускательная способность абсолютно черного тела. Но как осуществить тело, поглощающее свет любых длин волн? Разумеется, черные вещества типа сажи позволят нам приблизиться к такому телу. Однако несколько процентов будут нас всегда отделять от условия Возможно более остроумное решение.

Представьте себе ящик с небольшим отверстием. Уменьшая размеры этого отверстия, можно сделать его абсолютно черным. Эта особенность отверстий хорошо известна из повседневных наблюдений. Глубокая нора, раскрытое окно не освещенной изнутри комнаты, колодец - вот примеры абсолютно черных «тел». Вполне понятно, в чем здесь дело: луч, попавший в полость через отверстие, способен выйти наружу лишь после многократных отражений (рис. 187). Но при каждом отражении теряется доля энергии.

Поэтому при малом отверстии в большой полости луч не сумеет выйти, т. е. полностью поглотится.

Для измерения испускательной способности абсолютно черного тела изготавливается длинная трубка из тугоплавкого материала, которая помещается в печь и нагревается. Через отверстие трубки с помощью спектрографа изучается характер излучения. Результаты подобных экспериментов изображены на рис. 188. Кривые представляют собой интенсивность излучения в функции длины волны, построенные для нескольких температур. Мы видим, что излучение сосредоточено в относительно узком спектральном интервале, лежащем в пределах Лишь при более высоких температурах кривая захватывает область видимого спектра и начинает продвигаться в сторону коротких волн. Волны длиной несколько микрон носят название инфракрасных. Поскольку они при обычных температурах берут на себя основную обязанность переноса энергии, мы называем их тепловыми.

Кривая теплового излучения обладает максимумом, тем более ярко выраженным, чем выше температура. При возрастании температуры длина волны соответствующая максимуму спектра, сдвигается в сторону более коротких волн. Этот сдвиг подчиняется так называемому закону Вина, который легко устанавливается на опыте:

в этой формуле длина волны должна быть выражена в микронах, в градусах абсолютной шкалы. Сдвиг излучения в сторону коротких волн мы наблюдаем, когда следим за накаливанием металла - смена красного каления на желтое по мере роста температуры.

Второе обстоятельство, на которое мы обращаем внимание, рассматривая кривые излучения, - это быстрый рост всех ординат кривой с увеличением Если есть интенсивность для данной волны, то суммарная интенсивность спектра представится интегралом

Этот интеграл есть не что иное как площадь под кривой излучения. С какой же быстротой растет при увеличении 7? Анализ кривых показывает, что весьма быстро - пропорционально четвертой степени температуры:

где Это закон Стефана - Больцмана.

Оба закона имеют значение при определении температуры далеких от нас раскаленных тел. Именно таким способом определяется температура Солнца, звезд, раскаленного облака атомного взрыва.

Законы теплового излучения лежат в основе определения температуры расплавленного металла. Принцип оптических пирометров заключается в подборе такого накала нити электрической лампы, при котором свечение этой нити становится таким же, что и свечение расплавленного металла. Мы пользуемся законом: если тождественно излучение, то одинаковы и температуры. Что же касается температуры раскаленной нити, то она находится в прямой зависимости от электрического тока, проходящего через нить. Исходя из этого, оптический пирометр нетрудно проградуировать.

Реальные тела не являются абсолютно черными, и для каждого из них в формулу Стефана - Больцмана приходится вводить множитель, меньший единицы (поглощательную способность данного тела). Эти множители определяются эмпирически и представляют интерес для практической теплотехники, для которой проблемы теплообмена излучением крайне существенны. Тем не менее рассмотренные законы имеют значение, так как закономерности излучения (ход с температурой, ход с длиной волны) в общих чертах сохраняются и для нечерных тел. Теоретическая же значимость вопроса об абсолютно черном теле выяснится в следующем параграфе.

– физическая абстракция, применяемая в термодинамике, тело, которое полностью поглощает излучение во всех диапазонах, падающего на него. Несмотря на название, абсолютно черное тело само может испускать электромагнитное излучение. Спектр излучения абсолютно черного тела определяется только его температурой. Практической моделью черного тела может быть полость с небольшим отверстием и зачерненными стенками, поскольку свет, попадающий сквозь отверстие в полость, испытывает многократные отражения и сильно поглощается. Глубокий черный цвет некоторых материалов (древесного угля, черного бархата) и зрачка человеческого глаза объясняется тем же механизмом.
Термин введен Густавом Кирхгофом в 1862 году.

Интенсивность излучения абсолютно черного тела в зависимости от температуры и частоты определяется законом Планка:

Где I (?) d ? – мощность излучения на единицу площади излучающей поверхности на единицу телесного угла в диапазоне частот от? до? + d ?

Общая энергия теплового излучения определяется законом Стефана-Больцмана:

Где F – мощность на единицу площади излучающей поверхности, а

Вт / (м 2 · К 4) – стала Стефана-Больцмана.

Длина волны, при которой энергия излучения максимальна, определяется законом смещения Вина:

Где T – температура в кельвинах, а ? max – длина волны с максимальной интенсивностью в метрах.
Видимый цвет абсолютно черных тел с разной температурой представлен на диаграмме справа.
Движение лучей света в абсолютно черном теле Искусственно можно изготовить практически абсолютно черное тело, вичорнившы внутреннюю поверхность нагретого до определенной температуры непрозрачного тела с полостью и малым отверстием. Всякий луч, проходя сквозь отверстие А в полость С, назад практически не выходит, потому испытывает многократного отражения и поглощения. Итак, отверстие А поглощает лучи так, как абсолютно черное тело.
Следует отметить, что геометрические размеры абсолютно черного тела накладывают естественные ограничения на длину электромагнитной волны, может распространяться в нем. Действительно, если длина волны больше размеры черного тела, то она в нем просто не сможет видзеркалюватись от стенок. Этот факт особенно важен в космологии, при моделировании Вселенной, в виде абсолютно черного тела на ранних этапах развития, особенно при рассмотрении реликтового излучения.
Понятием абсолютно черного тела широко пользуются в астрофизике. Излучение Солнца близко к излучению такого тела с температурой 6000К. Вся Вселенная пронизана так называемым реликтовым излучением, близким к излучению абсолютно черного тела с температурой 3К. Сравнение полного излучения звезд с излучением такого тела, позволяет приближенно оценить эффективную температуру звезды. Отклонение излучения звезды от излучения абсолютно черного тела часто бывает весьма заметным. В глубине Солнца и звезд, нагретых до десятков миллионов градусов, излучение с высокой точностью соответствует такому излучению.
Для практической реализации модели абсолютно черного тела необходимо обеспечить возможность равномерного нагрева стенок полости и выход излучения наружу через малое отверстие. Одним из первых экспериментальных образцов черного тела был прибор изготовлен Люммером и Прингсгеймом. Он представлял собой металлическую емкость с двойными стенками (подобно термостата). Пространство между стенками использовался в качестве «температурной бани» для поддержания определенной и равномерной температуры. Это достигалось путем пропускания пару кипящей воды или для низких температур – путем наполнения льдом, твердой углекислотой, жидким воздухом и т.п.
Для исследования излучения при высоких температурах использовалось черное тело другой конструкции. Цилиндр с платиновой жести, через который подается электрический ток, нужен для равномерного нагрева внутреннего фарфорового цилиндра. Температура внутри цилиндра измерялось термопарой, а диафрагмы предотвращали охлаждению проникающим воздухом.
С помощью подобных простых приборов – моделей черного тела, были экспериментально исследованы законы излучения, точно определены его константы и изучены спектральное распределение яркости.

Абсолютно чёрное тело

Абсолютно чёрное тело - физическая идеализация, применяемая в термодинамике, тело, поглощающее всё падающее на него электромагнитное излучение во всех диапазонах и ничего не отражающее. Несмотря на название, абсолютно чёрное тело само может испускать электромагнитное излучение любой частоты и визуально иметь цвет. Спектр излучения абсолютно чёрного тела определяется только его температурой.

Важность абсолютно чёрного тела в вопросе о спектре теплового излучения любых (серых и цветных) тел вообще, кроме того, что оно представляет собой наиболее простой нетривиальный случай, состоит ещё и в том, что вопрос о спектре равновесного теплового излучения тел любого цвета и коэффициента отражения сводится методами классической термодинамики к вопросу об излучении абсолютно чёрного (и исторически это было уже сделано к концу XIX века, когда проблема излучения абсолютно чёрного тела вышла на первый план).

Наиболее чёрные реальные вещества, например, сажа, поглощают до 99 % падающего излучения (то есть имеют альбедо, равное 0,01) в видимом диапазоне длин волн, однако инфракрасное излучение поглощается ими значительно хуже. Среди тел Солнечной системы свойствами абсолютно чёрного тела в наибольшей степени обладает Солнце.

Термин был введён Густавом Кирхгофом в 1862 году.

Практическая модель

Модель абсолютно чёрного тела

Абсолютно чёрных тел в природе не существует (кроме чёрных дыр), поэтому в физике для экспериментов используется модель. Она представляет собой замкнутую полость с небольшим отверстием. Свет, попадающий внутрь сквозь это отверстие, после многократных отражений будет полностью поглощён, и отверстие снаружи будет выглядеть совершенно чёрным. Но при нагревании этой полости у неё появится собственное видимое излучение. Поскольку излучение, испущенное внутренними стенками полости, прежде, чем выйдет (ведь отверстие очень мало), в подавляющей доле случаев претерпит огромное количество новых поглощений и излучений, то можно с уверенностью сказать, что излучение внутри полости находится в термодинамическом равновесии со стенками. (На самом деле, отверстие для этой модели вообще не важно, оно нужно только чтобы подчеркнуть принципиальную наблюдаемость излучения, находящегося внутри; отверстие можно, например, совсем закрыть, и быстро приоткрыть только тогда, когда равновесие уже установилось и проводится измерение).

Законы излучения абсолютно чёрного тела

Классический подход

Изначально к решению проблемы были применены чисто классические методы, которые дали ряд важных и верных результатов, однако полностью решить проблему не позволили, приведя в конечном итоге не только к резкому расхождению с экспериментом, но и к внутреннему противоречию - так называемой ультрафиолетовой катастрофе .

Изучение законов излучения абсолютно чёрного тела явилось одной из предпосылок появления квантовой механики.

Первый закон излучения Вина

В 1893 году Вильгельм Вин, воспользовавшись, помимо классической термодинамики, электромагнитной теорией света, вывел следующую формулу:

где u ν - плотность энергии излучения,

ν - частота излучения,

T - температура излучающего тела,

f - функция, зависящая только от частоты и температуры. Вид этой функции невозможно установить, исходя только из термодинамических соображений.

Первая формула Вина справедлива для всех частот. Любая более конкретная формула (например, закон Планка) должна удовлетворять первой формуле Вина.

Из первой формулы Вина можно вывести закон смещения Вина (закон максимума) и закон Стефана - Больцмана, но нельзя найти значения постоянных, входящих в эти законы.

Исторически именно первый закон Вина назывался законом смещения, но в настоящее время термином «закон смещения Вина» называют закон максимума.

Второй закон излучения Вина

В 1896 году Вин на основе дополнительных предположений вывел второй закон:

где C 1 , C 2 - константы. Опыт показывает, что вторая формула Вина справедлива лишь в пределе высоких частот (малых длин волн). Она является частным конкретным случаем первого закона Вина.

Позже Макс Планк показал, что второй закон Вина следует из закона Планка для больших энергий квантов, а также нашёл постоянные C 1 и C 2 . С учётом этого, второй закон Вина можно записать в виде:

где h - постоянная Планка,

k - постоянная Больцмана,

c - скорость света в вакууме.

Закон Рэлея - Джинса

Попытка описать излучение абсолютно чёрного тела исходя из классических принципов термодинамики и электродинамики приводит к закону Рэлея - Джинса:

Эта формула предполагает квадратичное возрастание спектральной плотности излучения в зависимости от его частоты. На практике такой закон означал бы невозможность термодинамического равновесия между веществом и излучением, поскольку согласно ему вся тепловая энергия должна была бы перейти в энергию излучения коротковолновой области спектра. Такое гипотетическое явление было названо ультрафиолетовой катастрофой.

Тем не менее закон излучения Рэлея - Джинса справедлив для длинноволновой области спектра и адекватно описывает характер излучения. Объяснить факт такого соответствия можно лишь при использовании квантово-механического подхода, согласно которому излучение происходит дискретно. Исходя из квантовых законов можно получить формулу Планка, которая будет совпадать с формулой Рэлея - Джинса при .

Этот факт является прекрасной иллюстрацией действия принципа соответствия, согласно которому новая физическая теория должна объяснять всё то, что была в состоянии объяснить старая.

Закон Планка

Зависимость мощности излучения чёрного тела от длины волны.

Интенсивность излучения абсолютно чёрного тела в зависимости от температуры и частоты определяется законом Планка :

где -мощность излучения на единицу площади излучающей поверхности в единичном интервале частот в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·Гц −1 ·ср −1).

Эквивалентно,

где - мощность излучения на единицу площади излучающей поверхности в единичном интервале длин волн в перпендикулярном направлении на единицу телесного угла (размерность в СИ: Дж·с −1 ·м −2 ·м −1 ·ср −1).

Полная (т.е. испускаемая во всех направлениях) спектральная мощность излучения с единицы поверхности абсолютно чёрного тела описывается этими же формулами с точностью до коэффициента π: ε(ν, T ) = πI (ν, T ), ε(λ, T ) = πu (λ, T ).

Закон Стефана - Больцмана

Общая энергия теплового излучения определяется законом Стефана - Больцмана, который гласит:

Мощность излучения абсолютно чёрного тела (интегральная мощность по всему спектру), приходящаяся на единицу площади поверхности, прямо пропорциональна четвёртой степени температуры тела:

где - мощность на единицу площади излучающей поверхности, а

Вт/(м²·К 4) - постоянная Стефана - Больцмана .

Таким образом, абсолютно чёрное тело при = 100 K излучает 5,67 ватт с квадратного метра своей поверхности. При температуре 1000 К мощность излучения увеличивается до 56,7 киловатт с квадратного метра.

Для нечёрных тел можно приближённо записать:

где - степень черноты (для всех веществ, для абсолютно чёрного тела).

Константу Стефана - Больцмана можно теоретически вычислить только из квантовых соображений, воспользовавшись формулой Планка. В то же время общий вид формулы может быть получен из классических соображений (что не снимает проблемыультрафиолетовой катастрофы).

Закон смещения Вина

Длина волны, при которой энергия излучения абсолютно чёрного тела максимальна, определяется законом смещения Вина :

где - температура вкельвинах, а - длина волны с максимальной интенсивностью вметрах.

Так, если считать в первом приближении, что кожа человека близка по свойствам к абсолютно чёрному телу, то максимум спектра излучения при температуре 36 °C (309 К) лежит на длине волны 9400 нм (в инфракрасной области спектра).

Видимый цвет абсолютно чёрных тел с разной температурой представлен на диаграмме.

Чернотельное излучение

Электромагнитное излучение, находящееся в термодинамическом равновесии с абсолютно чёрным телом при данной температуре (например, излучение внутри полости в абсолютно чёрном теле), называется чернотельным (или тепловым равновесным) излучением. Равновесное тепловое излучение однородно, изотропно и неполяризовано, перенос энергии в нём отсутствует, все его характеристики зависят только от температуры абсолютно чёрного тела-излучателя (и, поскольку чернотельное излучение находится в тепловом равновесии с данным телом, эта температура может быть приписана излучению). Объёмная плотность энергии чернотельного излучения равна егодавление равно Очень близко по своим свойствам к чернотельному так называемоереликтовое излучение, или космический микроволновой фон - заполняющее Вселеннуюизлучение с температурой около 3 К.

Цветность чернотельного излучения

Цвета даны в сравнении с рассеянным дневным светом. Реально воспринимаемый цвет может быть искажён адаптацией глаза к условиям освещения.

Закон излучения Кирхгофа

Закон излучения Кирхгофа ­– физический закон, установленный немецким физиком Кирхгофом в 1859 году.

В современной формулировке закон звучит следующим образом:

Отношение излучательной способности любого тела к его поглощательной способности одинаково для всех тел при данной температуре для данной частоты и не зависит от их формы и химической природы.

Известно, что при падении электромагнитного излучения на некоторое тело часть его отражается, часть поглощается и часть может пропускаться. Доля поглощаемого излучения на данной частоте называется поглощательной способностью тела . С другой стороны, каждое нагретое телоизлучает энергию по некоторому закону , именуемымизлучательной способностью тела .

Величины имогут сильно меняться при переходе от одного тела к другому, однако согласно закону излучения Кирхгофа отношение испускательной и поглощательной способностей не зависит от природы тела и является универсальной функцией частоты (длины волны) и температуры:

По определению, абсолютно чёрное тело поглощает всё падающее на него излучение, то есть для него . Поэтому функциясовпадает с излучательной способностью абсолютно чёрного тела, описываемойзаконом Стефана - Больцмана, вследствие чего излучательная способность любого тела может быть найдена исходя лишь из его поглощательной способности.

Реальные тела имеют поглощательную способность меньше единицы, а значит, и меньшую чем у абсолютно чёрного тела излучательную способность. Тела, поглощательная способность которых не зависит от частоты, называются серыми. Их спектр имеет такой же вид, как и у абсолютно чёрного тела. В общем же случае поглощательная способность тел зависит от частоты и температуры, и их спектр может существенно отличаться от спектра абсолютно чёрного тела. Изучение излучательной способности разных поверхностей впервые было проведено шотландским ученым Лесли при помощи его же изобретения - куба Лесли.

Спектральная плотность излучения абсолютно черного тела является универсальной функцией длины волны и температуры. Это значит, что спектральный состав и энергия излучения абсолютно черного тела не зависят от природы тела.

Формулы (1.1) и (1.2) показывают, что зная спектральную и интегральную плотность излучения абсолютно черного тела, можно вычислить их для любого нечерного тела, если известен коэффициент поглощения последнего, который должен быть определен экспериментально.

Исследования привели к следующим законам излучения абсолютно черного тела.

1. Закон Стефана - Больцмана: Интегральная плотность излучения абсолютно черного тела пропорциональна четвертой степени его абсолютной температуры

Величина σ называется постоянной Стефана - Больцмана:

σ = 5,6687·10 -8 Дж·м - 2 ·с - 1 ·К – 4 .

Энергия, испускаемая за время t абсолютно черным телом с излучающей поверхностью S при постоянной температуре Т,

W=σT 4 St

Если же температура тела изменяется со временем, т.е. Т = Т (t ), то

Закон Стефана - Больцмана указывает на чрезвычайно быстрый рост мощности излучения с возрастанием температуры. Например при повышении температуры с 800 до 2400 К (т.е. с 527 до 2127° С) излучение абсолютно черного тела возрастает в 81 раз. Если абсолютно черное тело окружено средой с температурой Т 0 , то око будет поглощать энергию, излучаемую самой средой.

В этом случае разность между мощностью испускаемого и поглощаемого излучений можно приближенно выразить формулой

U=σ(T 4 – T 0 4)

К реальным телам закон Стефана - Больцмана не применим, как наблюдения показывают более сложную зависимость R от температуры, а также - от формы тела и состояния его поверхности.

2. Закон смещения Вина. Длина волны λ 0 , на которую приходится максимум спектральной плотности излучения абсолютно черного тела, обратно пропорциональна абсолютной температуре тела:

λ 0 = или λ 0 Т = b.

Константа b, называемая постоянной закона Вина, равна b = 0,0028978 м · К (λ выражена в метрах).

Таким образом, при повышении температуры растет не только полное излучение, но, кроме того, изменяется распределение энергии по спектру. Например, при малых температурах тела изучают главным образом инфракрасные лучи, а по мере повышения температуры излучение делается красноватым, оранжевым и, наконец, белым. На рис. 2.1 показаны эмпирические кривые распределения энергии излучения абсолютно черного тела по длинам волн при разных температурах: из них видно, что максимум спектральной плотности излучения при повышении температуры смещается в сторону коротких волн.

3. Закон Планка. Закон Стефана - Больцмана и закон смещения Вина не решают основной задачи о том, как велика спектральная плотность излучения, приходящаяся на каждую длину волны в спектре абсолютно черного тела при температуре Т. Для этого надо установить функциональную зависимость и от λ и Т.

Основываясь на представлении о непрерывном характере испускания электромагнитных волн и на законе равномерного распределения энергии по степеням свободы (принятых в классической физике), были получены две формулы для спектральной плотности и лучения абсолютно черного тела:

1) формула Вина

где a и b - постоянные величины;

2) формула Рэлея - Джинса

u λТ = 8πkT λ – 4 ,

Где k - постоянная Больцмана. Опытная проверка показала, что для данной температуры формула Вина верна для коротких волн (когда λТ очень мало и дает резкие схождения опытом в области длинных волн. Формула Рэлея - Джинса оказалась верна для длинных волн и совершенно не применима для коротких (рис. 2.2).

Таким образом классическая физика оказалась неспособной объяснить закон распределения энергии в спектре излучения абсолютно черного тела.

Для определения вида функции u λТ понадобились совершенно новые идеи о механизме испускания света. В 1900 г. М. Планк высказал гипотезу, что поглощение и испускание энергии электромагнитного излучения атомами и молекулами возможно только отдельными «порциями», которые получили название квантов энергии. Величина кванта энергии ε пропорциональна частоте излучения v (обратно пропорциональна длине волны λ ):

ε = hv = hc/λ

Коэффициент пропорциональности h = 6,625·10 -34 Дж·с и называется постоянной Планка. В видимой части спектра для длины волны λ = 0.5 мкм величина кванта энергии равна:

ε = hc/λ= 3.79·10 -19 Дж·с = 2.4 эВ

На основании этого предположения Планком была получена формула для u λТ :

где k – постоянная Больцмана, с – скорость света в вакууме. л Кривая, соответствующая функции (2.1), так же показана на рис. 2.2.

Из закона Планка (2.11) получаются закон Стефана - Больцмана и закон смещения Вина. Действительно, для интегральной плотности излучения получаем

Расчет по этой формуле дает результат, совпадающий с эмпирическим значением постоянной Стефана - Больцмана.

Закон смещения Вина и его константу можно получить из формулы Планка нахождением максимума функции u λТ , для чего берется производная от u λТ по λ , и приравнивается нулю. Вычисление приводит к формуле:

Расчет постоянной b по этой формуле также дает результат, совпадающий с эмпирическим значением постоянной Вина.

Рассмотрим важнейшие применения законов теплового излучения.

А. Тепловые источники света. Большинство искусственных источников света является тепловыми излучателями (электрические лампы накаливания, обычные дуговые лампы и т. д.). Однако эти источники света не являются достаточно экономичными.

В § 1 было сказано, что глаз обладает чувствительностью только к очень узкому участку спектра (от 380 до 770 нм); все остальные волны не оказывают зрительного ощущения. Максимальная чувствительность глаза соответствует длине волны λ = 0,555 мкм. Исходя из этого свойства глаза следует требовать от источников света такого распределения энергии в спектре, при котором максимальная спектральная плотность излучения падала бы на длину волны λ = 0,555 мкм или около нее. Если в качестве такого источника взять абсолютно черное тело, то по закону смещения Вина можно вычислить его абсолютную температуру:

Таким образом, наиболее выгодный тепловой источник света должен иметь температуру в 5200 К, что соответствует температуре солнечной поверхности. Такое совпадение является результатом биологического приспособления человеческого зрения к распределению энергии в спектре солнечного излучения. Но и у этого источника света коэффициент полезного действия (отношение энергии видимого излучения к полной энергии всего излучения) будет невелик. Графически на рис. 2.3 этот коэффициент выражается отношением площадей S 1 и S ; площадь S 1 выражает энергию излучения видимой области спектра, S - всю энергию излучения.

Расчет показывает, что при температуре около 5000-6000 К световой к. п. д. равен всего 14-15% (для абсолютно черного тела). При температуре же существующих искусственных источников света ( 3000 К) этот к. п. д. составляет всего около 1-3%. Такая невысокая «световая отдача» теплового излучателя объясняется тем, что при хаотическом движении атомов и молекул возбуждаются не только световые (видимые), по и другие электромагнитные волны, которые не оказывают светового воздействия н глаз. Поэтому невозможно избирательно заставить тело излучать только те волны, к которым чувствителен глаз: обязательно излучаются и невидимые волны.

Важнейшие из современных температурных источников света - это электрические лампы накаливания с вольфрамовой нитью. Температура плавления вольфрама равна 3655 К. Однако нагрев нити до температур выше 2500 К опасен, так как вольфрам при этой температуре очень быстро распыляется, и нить разрушается. Для уменьшения распыления нити было предложено наполнять лампы инертными газами (аргон, ксенон, азот) при давлении около 0,5 атм. Это позволило поднять температуру нити до 3000-3200 К. При этих температурах максимум спектральной плотности излучения лежит в области инфракрасных волн (около 1,1 мкм), поэтому все современные лампы накаливания имеют к. п. д. немногим больший 1%.

Б. Оптическая пирометрия. Изложенные выше законы излучения черного тела позволяют определять температуру этого тела, если известна длина волны λ 0 , соответствующая максимуму u λТ (по закону Вина), или если известна величина интегральной плотности излучения (по закону Стефана - Больцмана). Эти методы определения температуры тела по его тепловому излучению на кают я оптической пирометрией; они особенно удобны при измерении очень высоких температур. Так как упомянутые законы применимы только к абсолютно черному телу, то оптическая пирометрия, основанная на них, дает хорошие результаты только при измерении температур тел, близких по своим свойствам к абсолютно черному. На практике таковыми являются заводские печи, лабораторные муфельные печи, топки котлов и т. п. Рассмотрим три способа определения температуры тепловых излучателей:

а. Метод, основанный на законе смещения Вина. Если нам известна та длина волны, на которую приходится максимум спектральной плотности излучения, то температура тела может быть вычислена по формуле (2.2).

В частности, таким способом определяется температура на поверхности Солнца, звезд и т. д.

Для нечерных тел этот способ не дает истинную температуру тела; если в спектре излучения имеется один максимум и мы рассчитаем Т по формуле (2.2), то расчет дает нам температуру абсолютно черного тела, имеющего почти такое же распределение энергии в спектре, как и испытуемое тело. При этом цветность излучения абсолютно черного тела будет одинакова с цветностью исследуемого излучения. Такая температура тела называется его цветовой температурой.

Цветовая температура нити лампы накаливания равна 2700-3000 К, что очень близко к ее истинной температуре.

б. Радиационный способ измерения температур основан на измерении интегральной плотности излучения тела R и вычисления его температуры о закону Стефана - Больцмана. Соответствующие приборы называются радиационными пирометрами.

Естественно, что если излучающее тело не является абсолютно черным, то радиационным пирометр не даст истинной температуры тела, а покажет ту температуру абсолютно черного тела, при которой интегральная плотность излучения последнего равна интегральной плотности излучения испытуемого тела. Такая температура тела называется радиационной, или энергетической, температурой.

Из недостатков радиационного пирометра укажем на невозможность его применения для определения температур небольших объектов, а также на влияние среды, находящейся между объектом и пирометром, которая поглощает часть излучения.

в. Яркостный метод определения температур. Принцип действия его основан на визуальном сравнении яркости раскаленной нити лампы пирометра с яркостью изображения накаленного испытуемого тела. Прибор представляет собой зрительную трубу с помещенной внутри электрической лампой, питаемой от аккумулятора. Равенство зрительно наблюдаемое через монохроматический фильтр, определяется по исчезновению изображения нити на фоне изображения раскаленного тела. Накал нити регулируется реостатом, а температура определяется по шкале амперметра, градуированного прямо на температуру.



Похожие статьи