Промышленные сушилки для фруктов сделать самому. Самодельная сушилка для овощей и фруктов – алгоритм действий по сборке

» Ветрогенератор простой домашний своими руками

Альтернативная энергия, добываемая посредством «ветряной мельницы» — заманчивая идея, охватившая огромное число потенциальных потребителей электричества. Что же, электромехаников разного калибра, пытающихся сделать ветрогенератор своими руками, можно понять. Дешёвая (практически бесплатная) энергетика всегда ценилась на вес золота. Между тем установка даже простейшего домашнего ветрогенератора даёт реальную возможность получить бесплатный ток. Но как сделать домашний ветрогенератор своими руками? Как заставить работать систему энергии ветра? Попробуем раскрыть занавес тайны с помощью опыта бывалых электромехаников.

Тема изготовления и установки самодельных ветряных генераторов очень широко представлена в сети Интернет. Однако большая часть материала – это банальное описание принципов получения электрической .

Теоретическая методика устройства (установки) ветрогенераторов уже давно известна и вполне понятна. А вот как обстоят дела практически в бытовом секторе – вопрос, раскрытый далеко не полностью.

Чаще всего в качестве источника тока для самодельных домашних ветрогенераторов рекомендуют выбирать автомобильные генераторы или асинхронные двигатели переменного тока, дополненные неодимовыми магнитами.


Процедура переделки асинхронного электродвигателя переменного тока под генератор для ветряка. Заключается в изготовлении «шубы» ротора из неодимовых магнитов. Крайне сложный и долговременный процесс

Однако оба варианта требуют существенной доработки, нередко сложной, дорогостоящей, отнимающей много сил и времени.

Куда проще и легче во всех отношениях установить электродвигатели, подобные тем, что выпускались прежде и выпускаются теперь фирмой Ametek (пример) и другими.

Для домашней ветрогенераторной установки подходят моторы постоянного тока напряжением 30 – 100 вольт. В режиме генератора от них можно получить примерно 50% от заявленного рабочего напряжения.

Следует отметить: при работе в режиме генерации электродвигатели постоянного тока требуется раскручивать до скорости выше номинальной.

При этом каждый отдельно взятый мотор из десятка одинаковых экземпляров, может показывать совершенно разные характеристики.


Мотор постоянного тока для домашнего ветрогенератора. Оптимальный вариант из числа продуктов, изготовленных фирмой Ametek. Также удачно подходят подобные электродвигатели производства других фирм

Проверить эффективность любого похожего мотора несложно. Достаточно подключить к электрическим выводам обычную автомобильную лампу накаливания на 12 вольт и крутануть вал мотора рукой. При хороших технических показателях электродвигателя лампа обязательно зажжётся.

Ветрогенератор в домашнем конструкторском наборе

  • винт на три лопасти,
  • флюгерную систему,
  • мачту металлическую,
  • контроллер заряда АКБ.

Желательно, но не обязательно, соблюсти последовательность производства всех оставшихся частей ветряного генератора. Последовательность – это порядок, который необходим в любом деле для достижения результативности. Очевидно: существенную помощь в строительстве энергетической машины оказывают готовые наборы:

Изготовление лопастей пропеллера

Достаточно лёгким и простым видится изготовление лопастей винта генератора из пластиковой трубы диаметром 150-200 мм.

Для описываемой конструкции домашнего ветрогенератора были сделаны (вырезаны) три лопасти. Материал: 152-миллиметровая сантехническая труба. Длина каждой лопасти – 610 мм.


Лопасти для пропеллера домашнего ветрогенератора. Элементы пропеллера изготовлены из обычной сантехнической трубы, что широко используется в хозяйстве ЖКХ

Сантехническая труба изначально отрезается по размеру длины с небольшим запасом на обработку. Затем отрезанный кусок рассекается по осевой линии на четыре одинаковых части.

Каждая часть вырезается по несложному шаблону рабочей пропеллерной лопасти. Все кромки резов необходимо тщательно зачистить – отполировать для лучшей аэродинамики.

Элементы пропеллера ветрогенератора – пластиковые лопасти, закрепляются на шкиве, собранном из двух отдельных дисков. Шкив насаживается на вал мотора и притягивается винтом.

Та часть ступицы, на которой крепятся лопасти, имеет диаметр 127 мм. Другая часть – шестерня, в диаметре имеет размер 85 мм. Обе детали ступицы не изготавливались специально.


Закреплённые на ступице лопасти винта домашнего ветряка. Собранный из подручных деталей и готовый к установке на домашний ветрогенератор простейший винт

Металлический диск и шестерню удалось найти в старом техническом хламе. Но диск был без отверстия под вал, а шестерня имела малый диаметр. Объединением этих деталей в единое целое удалось решить проблему соотношения массы и диаметра.

После закрепления лопастей, осталось лишь закрыть торец ступицы пластиковым обтекателем (опять же для аэродинамики).

Флюгерная основа ветрогенератора

Обычный деревянный брусок (желательно из твёрдых пород) длиной 600 мм подойдёт для флюгерной основы. На одном конце бруска хомутами закрепляется электродвигатель, на другом монтируется «хвост».


Флюгерная часть установки, куда поставлены двигатель и хвост ветряка. Мотор дополнительно закрепляется хомутами, хвост накладными брусочками

Хвостовая часть сделана из листового алюминия – это вырезанный прямоугольный кусок, который попросту устанавливается между наставными брусочками и скрепляется винтами.

Для улучшения свойств долговечности, деревянный брусок рекомендуется дополнительно обработать пропиткой и покрыть сверху лаком.

На нижней плоскости бруска, на расстоянии 190 мм от заднего торца бруса, через опорный фланец закрепляется трубчатый отвод под соединение с мачтой.


Флюгерная система домашнего ветряка (нижняя её часть), изготовленная из простых доступных деталей. Такие детали найдутся у каждого владельца домашнего хозяйства

Недалеко от точки закрепления фланца, на стенке трубы высверливается отверстие d=10-12 мм под вывод кабеля сквозь трубу от ветрогенератора к накопителю энергии.

Основание и шарнирная мачта

Тогда как уже готова флюгерная часть домашнего ветрогенератора, наступает очередь производства опорной мачты. Домашнюю установку вполне достаточно поднять на высоту 5-7 метров. Металлическая труба d=50 мм (внешний d=57 мм) в самый раз подходит под мачту этого проекта ветрогенератора для дома.

Опорная тарелка под нижнюю часть мачты домашнего ветряка сделана из толстой листовой фанеры (20 мм). Диаметр блина 650 мм. По краям фанерного блина, равномерно по кругу и с отступом 25-30 мм просверлены 4 отверстия d=12 мм.


Нижняя и верхняя части, которые встанут между мачтой. Слева опорная площадка с установленным на поверхности шарнирным механизмом подъёма/спуска ветрогенератора

Эти отверстия предназначены под временное (или постоянное) штыревое крепление на грунт. Для прочности установки фанеру снизу можно усилить стальным листом.

На поверхности опорной тарелки прикреплена конструкция, собранная из металлических сантехнических фланцев, патрубков, уголков и муфты-тройника.

Между уголками и муфтой-тройником резьбовое сочленение выполнено не до конца. Это сделано специально, чтобы получить эффект шарнира. Таким образом, подъём или спуск ветрогенератора можно осуществлять без труда в любой момент.


Подставка под мачту ветряка оснащается четырьмя отверстиями для дополнительного крепления штырями на грунт. Так, примерно, выглядит состояние опорного элемента, когда мачта установлена и поднята

Муфта-тройник центральным отводом соединена с куском трубы, в нижней части которой установлен ограничитель для трубы мачты. Мачтовая труба надевается на трубчатый кусок меньшего диаметра до упора в ограничитель.

Примерно так же соединяется верхняя часть мачты и флюгерная система ветряка. Но там, в качестве ограничителя, внутри мачтовой трубы установлены подшипники.


Крепление мачты растяжками выполняется стандартно с применением обычных хомутов, которые несложно сделать своими руками из листового металла

Так что, для сборки всей мачтовой системы и потребуется, без каких-либо креплений, всего лишь соединить нижнюю и верхнюю части с мачтовой трубой. Затем, благодаря шарнирному устройству поднять ветрогенераторную установку и зафиксировать мачту растяжками.

Удобство шарнирной системы очевидно. К примеру, на случай непогоды ветрогенератор можно быстро «уложить» на землю, сохранив от разрушения и так же быстро установить в рабочее положение.

Домашний ветрогенератор и схема контроллера

Контроль напряжений и токов, снимаемых с генератора домашней ветряной энергетической установки и подаваемых на аккумуляторные батареи, необходим обязательно. Иначе АКБ быстро выйдет из строя.

Причина очевидна: нестабильность зарядного цикла и нарушения параметров зарядки. Или же следует применять, к примеру, которым не страшны хаотичные циклы, завышенные напряжения и токи.

Функции контроля достигаются сборкой и включением в конструкцию домашнего ветрогенератора простой электронной схемы. Домашние ветряные установки обычно комплектуются относительно простыми схемами.


Принципиальная схема контроллера заряда АКБ ветроэнергетической установки, сборка которой описывается в этой публикации. Минимум электронных компонентов и высокая надёжность

Главное назначение схем – управление реле, переключающего выходы ветрогенератора на аккумуляторную батарею или на балластную нагрузку. Переключение выполняется в зависимости от текущего уровня напряжения на клеммах АКБ.

Традиционная для домашних ветряков схема контроллера применялась и в этом случае. Электронная плата содержит небольшое число электронных компонентов. Схему достаточно просто спаять своими руками в домашних условиях.

Принцип построения обеспечивает зарядку аккумуляторов до момента, пока не будет достигнут граничный предел напряжения на клеммах. Затем реле переключает линию на установленный балласт. Реле нужно брать с контактной группой под высокие токи, не менее 40-60А.

Настройка схемы предполагает регулировку триммеров под установку соответствующих напряжений контрольных точек «А» и «В». Оптимальные значения напряжений в этих точках равны: для «А» — 7,25 вольт; для «В» — 5,9 вольт.

Если схема настроена под такие параметры, аккумуляторная батарея будет отключаться при достижении на клеммах напряжения 14,5 В и вновь подключаться к линии ветрогенератора при напряжении на клеммах 11,8 В.


Структурная электрическая схема домашнего ветряка: А1…А3 — аккумуляторная батарея; В1 — вентилятор; Ф1 — сглаживающий фильтр; Л1…Л3 — лампы накаливания (балласт); Д1…Д3 — мощные диоды

Схемой ветрогенератора предусмотрено управление вентилятором «3» (может использоваться для вентиляции газов АКБ) и альтернативной нагрузкой «4» через силовые транзисторы серии IRF.

Состояние выходов отмечают светодиоды красного и зелёного свечения. Предусмотрена установка ручного управления состоянием контроллера через кнопки «1» и «2».

Особенности подключения системы

Завершая публикацию, следует отметить одну важную особенность. (при условии уже работающей турбины) необходимо проводить следующей последовательностью:

  1. Подключить контакты «АКБ» на клеммы аккумулятора.
  2. Подключить контакты ветрогенератора на клеммы реле.

Если такую последовательность не соблюдать, существует высокий риск вывода контроллера из строя.

Установка ветрогенератора 4 кВт — видео гид

Метки:

Цена на электроэнергию неизменно растёт и, естественно, каждый хозяин старается оптимизировать расходы на её оплату. Здесь все средства хороши - начиная от средств экономии, техники с низким индексом потребления энергии, энергосберегающих ламп, и заканчивая использование многотарифных счётчиков электричества. Тем не менее, всегда останется заманчивой перспектива получения электричества не от государства, а от природы. Одним из самых эффективных подобных устройств остаётся ветрогенератор, который используется на Западе уже фактически наравне, а то и более широко, чем классические ТЭС или АЭС.

Цена и эффективность генератора

Естественно, самым практичным решением для получения электричества из энергии ветра, станет мощное устройство, способное вырабатывать необходимое количество энергии для обеспечения потребителей во всем доме. Ветрогенераторы своими руками на 220В могут быть разной мощности и мы рассмотрим принципы изготовления каждого возможного устройства из того, что может оказаться под руками у каждого рачительного хозяина.

Но для начала стоит провести хотя бы предварительный расчёт ветрогенератора и его рентабельности. К примеру, бытовой прибор на 800 кВт российской сборки обойдётся в полторы тысячи долларов США за один киловатт. Дорого. Китайская продукция, не отличающаяся надёжностью и точностью номиналов выльется в $900 за 1кВт. Тоже дорого. Заметьте, что это только сам генератор, без периферийного оборудования. Это фактически неподъемная цена для частника, поэтому постараемся использовать все, что есть под руками и сделать собственную автономную систему.

Как определиться с мощностью ветряка

Расчёт мощности ветрогенератора - это сложный и трудоёмкий процесс, который применим к определённому генератору-исходнику. Самый простой вариант - задействовать динамо-машину от трактора или автомобиля. Такое устройство фактически не требует доработок и может применяться в системе энергообеспечения «как есть». Безусловно, можно долго разговаривать об устройствах на неодимовых магнитах, только, к примеру, в деревне Архиповка Орловской области их не было в жизни и не будет никогда, а списанных тракторов - тьма.

Самый важный показатель любого генератора - это его КПД. К сожалению, у автотракторного устройства он не слишком высок. У неодимового генератора он может достигать 80%, а у нашего - не более 55-60%, но и с этими данными, без дополнительных доработок устройство может выдавать около 300 Вт. Это немного, но вполне достаточно, чтобы обеспечить электричеством постоянного тока светодиодные светильники, системы видеонаблюдения, а при условии применения преобразователя тока, телевизор с низким классом энергопотребления, однокамерный холодильник. И это только одна генераторная установка, но ведь никто не мешает сделать их три или пять штук. Теперь о движителе, который будет вращать динамомашину.

Вертикальные или роторные ветрогенераторы?

Лопастные вертикальные генераторы - одни из самых популярных в мире, однако для их постройки необходимо точно выполнить расчёт лопасти, её формы и размеров. Как показывает опыт создания таких устройств энтузиастами, самые эффективные лопастные генераторы - с регулируемым углом поворота лопасти. Средние размеры каждой из шести лопастей - 650х120 мм, а самый эффективный угол поворота относительно своей оси - около 12 градусов, хотя можно ставить эксперименты в каждом частном случае.

Роторный ветряк для дома выполняется с горизонтальным расположением оси генератора, на которой установлен ротор. Он может быть выполнен по нескольким схемам, которые представлены ниже. Самый простой вариант - изготовление ротора из цилиндрической ёмкости. Это может быть как пластиковая бочка, баллон для газа, в конце концов, кастрюля. Ёмкость должна быть разделена на четыре сегмента, каждый из которых крепится ступице. Ступица установлена на металлический каркас, примерный чертёж которого показан на рисунке.

Детали и расходные материалы, электрическая схема

Маломощный ветряк для дома можно собрать при наличии скромного набора б/у-шных устройств и деталей:

    генератор;

    автомобильная АКБ, чем свежее и чем больше ёмкость, тем лучше;

    инвертор на 300-700 Вт;

    цилиндрическая ёмкость;

    автомобильное или тракторное реле зарядки (в зависимости от вольтажа генератора);

    контрольный прибор (вольтметр);

  • Для коммутации прибора с сетью электрической сетью используются провода сечением площадью не менее 4 мм². Готовая установка подключается по схеме, показанной на фото через предохранители 8, которая размыкается выключателем 9 для обслуживания и ремонта. Номинал резистора 1 подбирается опытным путём, а амперметр 5 может быть установлен на выходе из преобразователя 5 по желанию. Также для удобства использования конструкции может быть использован переменный резистор 4 для регулировки напряжения. Более подробная схема инвертора представлена ниже.

    Таким образом можно собрать ветрогенератор для обеспечения минимальной потребности в электричестве. Расходуйте и производите энергию с умом, удачной всем работы!

Делаем ветроэлектростанцию своими руками у себя в частном доме. Ознакомимся с уже существующими промышленными аналогами на рынке и с работами народных умельцев.

Человечество на протяжении всего своего развития не перестает искать дешевые возобновляемые источники энергии, которые могли бы решить многие проблемы энергообеспечения. Одним из таких источников является энергия ветра, для преобразования которой в электрическую энергию, разработаны ветровые энергетические установки (ВЭУ), или, как их чаще называют, ветряные электростанции.

Любому человеку, особенно имеющему частный или загородный дом, хотелось бы иметь свой ветрогенератор, обеспечивающий жилье недорогой электрической энергией. Препятствием этому служит высокая стоимость промышленных образцов ВЭУ и, соответственно, слишком большой срок окупаемости для отдельно взятого владельца жилья, делающий его приобретение невыгодным. Одним из выходов может служить изготовление ветряной электростанции своими руками, позволяющее не только снизить общие затраты на ее приобретение, но и распределить эти затраты на некоторый срок, так как работа осуществляется в течение довольно длительного времени.

Для того чтобы сделать ветряную электростанцию, необходимо определить, позволяют ли погодные условия использовать ветровую энергию в качестве постоянного источника энергии. Ведь, если ветер для вашей местности редкость, вряд ли стоит начинать строительство самодельной ветряной электростанции. Если же с ветром все обстоит благополучно, желательно узнать общие климатические характеристики и, в частности, скорость ветра, с распределением ее по времени. Знание скорости ветра позволит правильно выбрать и сделать своими руками конструкцию ветряной электростанции.

Виды

Ветроэлектростанция своими руками классифицируется по расположению оси вращения и бывают:

  • с горизонтальным расположением;
  • с вертикальным расположением.

Установки с горизонтальным расположением оси называются установками пропеллерного типа и имеют самое широкое распространение в связи с высоким коэффициентом полезного действия. Недостатком этих установок является их более сложная конструкция, затрудняющая самодельные варианты изготовления, необходимость применения механизма следования направлению ветра и большая зависимость работы от скорости ветра — как правило, при малых скоростях эти установки не работают.

Более просты, неприхотливы и мало зависимы от скорости и направления ветра установки с вертикальным расположением рабочего вала — ортогональные с ротором Дарье и карусельные с ротором Савониуса. Недостатком их является весьма малый КПД, составляющий порядка 15%.

Недостатком обеих типов самодельной ветряной электростанции является низкое качество вырабатываемой электроэнергии, требующее дорогостоящих вариантов компенсации этого качества — стабилизирующих устройств, аккумуляторов, электрических преобразователей. В чистом виде электроэнергия пригодна только для использования в активной бытовой нагрузке — лампах накаливания и простых нагревательных устройствах. Для питания бытовой техники электроэнергия такого качества не пригодна.

Конструктивные элементы

Конструктивно, независимо от расположения оси, самодельная полноценная ветряная электростанция должна состоять из следующих элементов:

  • устройство для ориентирования ветряного двигателя по направлению ветра;
  • редуктор или мультипликатор для передачи вращения от ветряного двигателя к генератору;
  • генератор постоянного тока;
  • зарядное устройство;
  • аккумуляторная батарея для накопления электроэнергии;
  • инвертор для преобразования постоянного тока в переменный.

Особенности выбора источника тока

Одним из сложных элементов ветряной электростанции является генератор. Наиболее подходящим для изготовления своими руками является электродвигатель постоянного тока с рабочим напряжением 60-100 вольт. Этот вариант не требует переделки и способен работать с аппаратурой для зарядки автомобильной батареи.

Применение автомобильного источника напряжения затруднено тем, что его номинальная частота вращения составляет порядка 1800-2500 об/мин, а такую частоту вращения при прямом соединении не сможет обеспечить ни одна конструкция ветряного двигателя. В этом случае в составе установки необходимо предусмотреть редуктор или мультипликатор подходящей конструкции для увеличения частоты вращения в необходимых размерах. Скорее всего, этот параметр придется подбирать экспериментальным путем.

Возможным вариантом может стать реконструированный асинхронный двигатель с использованием неодимовых магнитов, но этот способ требует сложных расчетов и токарных работ, что зачастую не приемлет самодельная работа. Имеется вариант с межфазным подключением к обмоткам электродвигателя конденсаторов, емкость которых рассчитывается в зависимости от его мощности.

Изготовление

Учитывая то, что эффективность электростанции с горизонтальной осью имеет лучшие показатели эффективности, а бесперебойность подачи электроэнергии предполагается обеспечивать с помощью накопления энергии в аккумуляторной батарее, предпочтительнее для изготовления своими руками является именно такой вид ВЭУ, который мы и рассмотрим в рамках данной статьи.

Для того что бы сделать такую электростанцию своими руками понадобится следующий инструмент:

  • сварочный аппарат электродуговой сварки;
  • набор гаечных ключей;
  • набор сверл по металлу;
  • электродрель;
  • ножовка по металлу или УШМ с отрезным диском;
  • болты диаметром 6 мм с гайками для крепления лопастей к шкиву и алюминиевого листа к квадратной трубе.

Для изготовления ветряной электростанции своими руками потребуются следующие материалы:

  • пластиковая труба 150 мм длиной 600 мм;
  • лист алюминия размером 300х300 мм и толщиной 2,0 — 2,5 мм;
  • металлическая квадратная труба 80х40 мм и длиной 1,0 м;
  • труба диаметром 25 мм и длиной 300 мм;
  • труба диаметром 32 мм и длиной 4000-6000 мм;
  • медный провод длиной, достаточной для соединения электродвигателя, находящегося на мачте длиной 6 м, и нагрузки, которую будет питать этот источник тока;
  • электродвигатель постоянного тока 500 об/мин;
  • шкив для двигателя диаметром 120-150 мм;
  • аккумуляторная батарея 12 вольт;
  • автомобильное зарядное реле аккумулятора;
  • инвертор 12/220 вольт.

Процесс изготовления своими руками производится в следующем порядке:

Далее, в процессе работы установки, возможно, придется сделать другими размеры и конфигурацию лопастей, передаточное отношение между ветряным двигателем и генератором — каждый ветрогенератор, изготовленный своими руками, индивидуален в силу использования различных компонентов и условий ветрообразования. Первоначально ветряную электростанцию рекомендуют изготавливать небольшой мощности, на которой можно отработать полученную информацию не вкладывая большое количество средств.



Вертикальный ветрогенератор своими руками, чертежи, фото, видео ветряка с вертикальной осью.

Ветрогенераторы подразделяются по типу размещения вращающейся оси (ротора) на вертикальные и горизонтальные. Конструкцию ветрогенератора с горизонтальным ротором мы рассматривали в прошлой статье, теперь поговорим о ветрогенераторе с вертикальным ротором.

Схема аксиального генератора для ветрогенератора.

Изготовление ветроколеса.

Ветроколесо (турбина) вертикального ветрогенератора состоит из двух опор верхней и нижней, а также из лопастей.

Ветроколесо изготовляется из листов алюминия или нержавейки, также ветроколесо можно вырезать из тонкостенной бочки. Высота ветроколеса должна быть не менее 1 метра.

В этом ветроколесе угол изгиба лопастей задаёт скорость вращения ротора, чем больше изгиб, тем больше скорость вращения.

Ветроколесо крепится болтами сразу к шкиву генератора.

Для установки вертикального ветрогенератора можно использовать любую мачту, изготовление мачты подробно описано в этой .

Схема подключения ветогенератора.

Генератор подключается к контроллеру, тот в свою очередь к аккумулятору. В качестве накопителя энергии практичней использовать автомобильный аккумулятор. Поскольку бытовые приборы работают от переменного тока, нам понадобится инвертор для преобразования постоянного тока 12 V в переменный 220V.

Для подключения используется медный провод сечением до 2,5 квадрата. Схема подключения подробно описана .

Видео где показан ветрогенератор в работе.

Получение электрической энергии с помощью ветра становится одним из модных трендов последнего времени. Бытовой ветряной генератор, который относится к техническим средствам альтернативной электроэнергетики, приобрел свою популярность вполне заслуженно, так как обращение к нему обеспечивает владельцу ряд преимуществ:

  • ветроэнергетика относится к экологически чистым средствам выработки электроэнергии, отсутствие генерация отходов;
  • удобен в использовании из-за своей высокой надежности и низких эксплуатационных расходов;
  • может быть смонтирован самостоятельно при наличии минимальных навыков в области строительства и электрики;
  • его привлекательность с течением времени будет только увеличиваться из-за неизбежного увеличения тарифов электросбытовых компаний.

Устройство и принцип работы

Любой ветряной генератор состоит из нескольких типовых укрупненных блоков. Агрегат обязательно содержит турбину, которая вращается под действием воздушного потока, непосредственно или чаще всего через повышающий редуктор передает создаваемый момент на вал электрического генератора. Ротор вращается внутри статора на основе неодимовых магнитов, в результате чего вырабатывается электрическая энергия.

Конструкция ветряного генератора небольшой мощности показана на рисунке 1.

Рис. 1. Конструкция самодельного ветрового генератора

Вырабатываемая ветряным генератором электрическая энергия поступает в промежуточный накопитель, функции которого обычно берет на себя аккумуляторная батарея. Ток, отдаваемый аккумулятором, питает инвертор, с выхода которого снимают нормальное 220-вольтовое переменное напряжение бытовой частоты.

Наличие аккумулятора обязательно, т.к. он позволяет сгладить колебания мощности, снимаемой с турбины. Свою роль в этом играет факт того, что бытовой ветряной генератор устойчиво функционирует при скорости ветра от 6 м/с и выше, тогда как среднегодовое значение этого параметра на большинстве территории России оказывается примерно в полтора раза ниже.

Необходимые переключения, регулировки и прочие функции реализует блок автоматики.

Соответствующий уровень эксплуатационной надежности достигается наличие у конструкции запасов по отдаваемой мощности (обычно 10 – 20%).

Виды ветряков

Основное отличие ветряных генераторов между собой — исполнение воздушной турбины, которая может иметь различную конструкцию. Обычно полная совокупность агрегатов по ориентации вала вращения турбины делят на две основные разновидности: вертикальные и горизонтальные.

Вертикальные

Отличительная особенность и главное преимущество вертикального агрегата ветряного генератора — отсутствие жестких требований к высоте его установки, что заметно упрощает выбор места установки, процесс монтажа, последующее обслуживание механически подвижных частей. Воздушная турбина относится к тихоходной разновидности этой техники, может быть исполнена как

  • простейший классический ротор с минимумом тремя вертикально ориентированными лопастями (пример такого устройства представлен на рисунке 2);
  • двухрядный ротор, наличие внутреннего ряа регулируемых лопастей обеспечивает ему повышенный КПД)
  • ротор Дарье;
  • ротор Савониуса;
  • геликоидный ротор.

Более сложная форма трех последних типов турбин обеспечивает им меньшую материалоемкость.


Рисунок 2. Роторная воздушная турбина вертикального ветрогенератора

Отличается минимумом подвижных частей, КПД установки мало зависит от направления ветра.

Горизонтальные

Ветрогенераторы с горизонтальной ориентацией вала турбины приводятся во вращение пропеллером. Пропеллер может быть двух-, трех и многолопастным. Лопастям некоторых пропеллеров иногда придают довольно сложную форму для некоторого увеличения эффективности функционирования установки. Пример такого агрегата показан на рисунке 3.


Рис. 3. Горизонтальный многолопастной ветрогенератор

За счет большого диаметра винта обычно монтируются на стальной трубчатой или решетчатой мачте на высоте вплоть до нескольких десятков метров. Примеры таких мачт показаны на рисунке 4 и рисунке 5. Оборотной стороной увеличения высоты установки становится снижение турбулентности воздушного потока из-за ослабевания влияния земли, т.е. увеличение КПД и генерируемой мощности. С учетом этой особенности не рекомендуется использовать ветряки этой конструкции для коттеджных поселков из-за сильного экранирующего действия соседних строений.


Рисунок 4. Мачта ферменной конструкции для установки горизонтального ветрогенератора
Рис. 5. Крепежный узел для мачты трубчатой конструкции

Для создания баланса по крутящему моменту генератор закрывают обтекателем вала таким образом, чтобы он выполнял функции противовеса винта. Дополнительно удлиненная конструкция корпуса облегчает его ориентацию “по потоку”.

По сравнению с вертикальным устройством позволяет снять большую мощность. Платой за это становится трудности с выбором места установки, сложность монтажа, текущего обслуживания, а также неприятные акустические шумы при работе. Кроме того, из-за большой высоты конструкции горизонтальные ветряные генераторы обязательно требуют молниезащиты.

Малые ветрогенераторы

К малым или бытовым ветрогенераторам обычно относят агрегаты с мощностью не свыше 5 кВт. В розничной продаже доступны агрегаты различной мощности и исполнения отечественного и импортного производства, что позволяет подобрать нужное устройство без переплаты.

Обычно агрегаты поставляются в минимальном комплекте, который:

  • включает контроллер;
  • не содержит буферной аккумуляторной батареи;
  • обеспечивает сборку агрегата на месте установки при условии отсутствия местных ограничений.

Проект установки устройств горизонтального типа из-за их технической сложности требует тщательной проработки, может потребоваться консультация специалиста.

Стоимость маломощных моделей начинается с нескольких десятков тысяч рублей, сильно зависит от отдаваемой мощности.

Автоматика ветроэлектростанций

Современные электрические ветровые установки оборудуются развитой системой автоматики, которая:

  • значительно улучшает характеристики;
  • обеспечивает выравнивание отдаваемой мощности;
  • делает эксплуатацию безопасной.

Типовой набор автоматики включает в себя:

  • ограничитель частоты вращения ветряного колеса при высоких скоростях ветра;
  • выравнивание колеса “по потоку” (важно для горизонтальных ветряков);
  • защиту от короткого замыкания;
  • отключение при отказах техники, ураганных ветрах, превышении порогового уровня вибрации.

Модели среднего и старшего классов обязательно поддерживают дистанционное управление и диагностику. Часть агрегатов дополнительно контролирует направление и силу воздушного потока для максимизации снимаемой мощности за счет выбора соответствующего угла установки всего устройства и лопастей турбины.

Система торможения

Система торможения предотвращает механическое разрушение агрегата при слишком высокой скорости ветра. Суть этой системы заключается в том, что автоматика производит замыкание электрических цепей магнитной системы генератора, что приводит к появлению мощного тормозящего усилия.

Дополнительно алгоритм функционирования системы управления предусматривает полный останов воздушной турбины при ветрах ураганной силы. Порог останова может регулироваться пользователем, типовые заводские настройки этого параметра предполагают включение режима останова при скорости 80 км/час.

Производители

Отечественной промышленностью налажен серийный выпуск широкой гаммы бытовых ветрогенераторов. Их параметры приведены в таблице:

Модель Производитель Тип Мощность Примечание
ВГ 0,25 Ветро Свет, Россия Г 250 Вт
ВЭУ-3(4) СКБ Искра, Россия В 3 кВт 4-лопастная модель
Серия L Ветроэнергетика, Россия В 0,8 – 10 кВт
RKraft Германия Г 0,5 – 5 кВт
Wind Generator М300 Китай В 100 – 270 Вт 6-лопастной ротор диаметром 1 м, масса 11 кг, не имеет контроллера
Condor Home EDS Group, Россия Г 500 Вт 3-лопастной стеклопластиковый ротор

Максимальная скорость ветра 25 м/с

Масса 56 кг

Примечание: Г – горизонтальный, В — вертикальный

Плюсы и минусы

Основное преимущество ветряных электростанций – это их автономность.

Главные технические минусы оборудования этой разновидности — зависимость от погоды (кроме силы ветра влияет также снег и дождь) и сравнительно небольшая мощность, значение которой в среднем не превышает нескольких сотен Ватт. Требуют обязательного применения промежуточной буферной аккумуляторной батареи, которая требует замены через несколько лет службы.

При сравнении с дизель-генераторами уступают им по продолжительности работы, но зато не требуют подвоза топлива и выполнения сложных и дорогостоящих мероприятий по пожарной безопасности его хранения.

Которые в средних широтах реально работают максимум пять месяцев, заметно превосходит тем, что функционируют круглый год.

При существующих тарифах на электроэнергию не дают существенного выигрыша по приведенным затратам, однако не оказываются убыточными.

Изготовители ветровых электростанций большое значение уделяют их внешнему оформлению. Так что наличие этого агрегата на загородном участке не только свидетельствует о “технической продвинутости” его обладателя, но и может стать важным элементом дизайна и наглядной демонстрации заботы об окружающей среде.

О эстетических параметрах можно судить по рисунку 6.


Рис. 6. Горизонтальный ветрогенератор Condor Home отечественного производства

Заключение.

Ветровые электростанции могут считаться полноценным альтернативным источником электрической энергии. С учетом типовых климатических условий большинства местностей нашей страны малые ветрогенераторы имеет смысл комбинировать в единую систему с солнечной батареей и дизельным генератором. В этом случае они вполне могут стать эффективным автономным вспомогательным средством выработки электроэнергии на даче или в загородном доме.



Похожие статьи