Сравнение каталитического действия ферментов и неорганических катализаторов. Отличия ферментов от неорганических катализаторов

Отличия:

1. Скорость ферментативных реакций выше, чем реакций, катализируемых неорганическими катализаторами.

2. Ферменты обладают высокой специфичностью к субстрату.

3. Ферменты по своей химической природе белки, катализаторы - неорганика.

4. Ферменты подвержены регуляции (есть активаторы и ингибиторы ферментов), неорганические катализаторы работают нерегулируемо.

5. Ферменты обладают конформационной лабильностью - способностью к небольшим изменениям своей структуры за счет разрыва и образования новых слабых связей.

6. Ферментативные реакции протекают только в физиологических условиях, т. к. работают внутри клеток, тканей и организма (это определенные значения температуры, давления и рН).

Общие свойства ферментов:

1. Не расходуются в процессе катализа ;

2. Имеют высокую активность по сравнению с катализаторами др. природы;

3. Обладают высокой специфичностью;

4. Лабильность (неустойчивость);

5. Ускоряют только те реакции, которые не противоречат законам термодинамики .

Общие свойства неорганических катализаторов:

1. Химическая природа - низкомолекулярные вещества;

2. В ходе реакции структура катализатора изменяется незначительно, или не изменяется вовсе;

3. Оптимум pH - сильнокислая или щелочная;

4. Увеличение скорости реакции намного меньше, чем при действии ферментов.

Специфичность - очень высокая избирательность ферментов по отношению к субстрату. Специфичность фермента объясняется совпадением пространственной конфигурации субстрата и субстратного центра. За специфичность фермента ответственен как активный центр фермента, так и вся его белковая молекула. Активный центр фермента определяет тип реакции, который может осуществить данный фермент. Различают три вида специфичности: абсолютную, относительную, стереохимическую.

Абсолютная специфичность. Такой специфичностью обладают ферменты, которые действуют только на один субстрат. Например, сахараза гидролизует только сахарозу , лактаза - лактозу, мальтаза - мальтозу, уреаза - мочевину, аргиназа - аргинин и т.д.

Относительная специфичность - это способность фермента действовать на группу субстратов с общим типом связи, т.е. относительная специфичность проявляется только по отношению к определенному типу связи в группе субстратов. Пример: липаза расщепляют сложноэфирную связь в жирах животного и растительного происхождения. Амилаза гидролизует α-гликозидную связь в крахмале, декстринах и гликогене. Алкогольдегидрогеназа окисляет спирты (метанол , этанол и др.).

Стереохимическая специфичность - это способность фермента действовать только на один стереоизомер. Например: 1) L, B-изомерия: L- амилаза слюны и сока поджелудочной железы расщепляет только L-глюкозидные связи в крахмале и не расщепляет D-глюкозидные связи клетчатки; 2) L и В-изомерия: В нашем организме превращения подвергаются только L-аминокислоты, т.к. эти превращения осуществляются ферментами L-оксидазами, способными реагировать только с L-формой аминокислот; 3) Цис-, транс-изомерия: Фумаратгидратаза может превращать только транс-изомер (фумаровую кислоту) в яблочную. Цис-изомер (малеиновая кислота) таким превращениям в нашем организме не подвергается.


Локализация ферментов зависит от их функций. Одни ферменты просто растворены в цитоплазме, другие связаны с определенными органоидами. Например, окислительно-восстановительные ферменты сосредоточены в митохондриях.

Эктоферменты - ферменты, локализующиеся в плазматической мембране и действующие снаружи от нее

Эндоферменты - функционируют внутри клетки. Они катализируют реакции биосинтеза и энергетического обмена.

Экзоферменты - выделяются клеткой в окружающую среду, за пределами клетки расщепляют крупные молекулы на более мелкие осколки и тем самым способствуют проникновению их в клетку. К ним относятся гидролитические ферменты, играющие исключительно важную роль в питании микроорганизмов.

Сравнение каталитического действия ферментов и неорганических катализаторов

Сходство ферментов и неорганических катализаторов Отличие ферментов от неорганических катализаторов
1. Ускоряют только термодинамически возможные реакции 1. Для ферментов характерна высокая специфичность: субстратная специфичность : ▪ абсолютная (1 фермент - 1 субстрат), ▪ групповая (1 фермент – несколько похожих субстратов) ▪ стереоспецифичность (ферменты работают с субстратами только определенного стереоряда L или D). каталитическая специфичность (ферменты катализируют реакции преимущественно одного из типов химических реакций – гидролиза, окисления-восстановления и др)
2. Не изменяют состояние равновесия реакций, а только ускоряют его достижение. 2. Высокая эффективность действия: ферменты ускоряют реакции в10 8 -10 14 раз.
3. В реакциях не расходуются 3. Ферменты действуют только в мягких условиях (t = 36-37ºС, рН ~ 7,4, атмосферное давление), т.к. они обладают конформационной лабильностью – способностью к изменению конформации молекулы под действием денатурирующих агентов (рН, Т, химические вещества).
4. Действуют в малых количествах 4. В организме действие ферментов регулируется специфически (катализаторы только неспецифически)
5. Чувствительны к активаторам и ингибиторам 5. Широкий диапазон действия (большинство процессов в организме катализируют ферменты).

В настоящее время учение о ферментах является центральным в биохимии и выделено в самостоятельную науку – энзимологию . Достижения энзимологии используются в медицине для диагностики и лечения, для изучения механизмов патологии, а, кроме того, и в других областях, например, в сельском хозяйстве, пищевой промышленности, химической, фармацевтической и др.

Строение ферментов

Метаболит - вещество, которое участвует в метаболических процессах.

Субстрат – вещество, которое вступает в химическую реакцию.

Продукт – вещество, которое образуется в ходе химической реакции.

Ферменты характеризуются наличием специфических центров катализа.

Активный центр (Ац) – это часть молекулы фермента, которая специфически взаимодействует с субстратом и принимает непосредственное участие в катализе. Ац, как правило, находиться в нише (кармане). В Ац можно выделить два участка: участок связывания субстрата – субстратный участок (контактная площадка) и собственно каталитический центр .

Большинство субстратов образует, по меньшей мере, три связи с ферментом, благодаря чему молекула субстрата присоединяется к активному центру единственно возможным способом, что обеспечивает субстратную специфичность фермента. Каталитический центр обеспечивает выбор пути химического превращения и каталитическую специфичность фермента.

У группы регуляторных ферментов есть аллостерические центры , которые находятся за пределами активного центра. К аллостерическому центру могут присоединяться “+” или “–“ модуляторы, регулирующие активность ферментов.

Различают ферменты простые, состоят только из аминокислот, и сложные, включают также низкомолекулярные органические соединения небелковой природы (коферменты) и (или) ионы металлов (кофакторы).

Коферменты – это органические вещества небелковой природы, принимающие участие в катализе в составе каталитического участка активного центра. В этом случае белковую составляющую называют апоферментом , а каталитически активную форму сложного белка – холоферментом . Таким образом: холофермент = апофермент + кофермент.

В качестве коферментов функционируют:

· нуклеотиды,

· коэнзим Q,

· Глутатион

· производные водорастворимых витаминов:

Кофермент, который присоединен к белковой части ковалентными связями называется простетической группой . Это, например, FAD, FMN, биотин, липоевая кислота. Простетическая группа не отделяется от белковой части. Кофермент, который присоединен к белковой части нековалентными связями называется косубстрат . Это, например, НАД + , НАДФ + . Косубстрат присоединяется к ферменту в момент реакции.

Кофакторы ферментов – это ионы металлов, необходимые для проявления каталитической активности многих ферментов. В качестве кофакторов выступают ионы калия, магния, кальция, цинка, меди, железа и т.д. Их роль разнообразна, они стабилизируют молекулы субстрата, активный центр фермента, его третичную и четвертичную структуру, обеспечивают связывание субстрата и катализ. Например, АТФ присоединяется к киназам только вместе с Mg 2+ .

Изоферменты – это множественные формы одного фермента, катализирующие одну и ту же реакцию, но отличающие по физическим и химическим свойствам (сродству к субстрату, максимальной скорости катализируемой реакции, электрофоретической подвижности, разной чувствительности к ингибиторам и активаторам, оптимуму рН и термостабильности). Изоферменты имеют четвертичную структуру, которая образована четным количеством субъединиц (2, 4, 6 и т.д.). Изоформы фермента образуются в результате различных комбинаций субъединиц.

В качестве примера можно рассмотреть лактатдегидрогеназу (ЛДГ), фермент, который катализирует обратимую реакцию:

НАДН 2 НАД +

пируват ← ЛДГ → лактат

ЛДГ существует в виде 5 изоформ, каждая из которых состоит из 4-х протомеров (субъединиц) 2 типов М (muscle) и Н (heart). Синтез протомеров М и Н типа кодируется двумя разными генетическими локусами. Изоферменты ЛДГ различаются на уровне четвертичной структуры: ЛДГ 1 (НННН), ЛДГ 2 (НННМ), ЛДГ 3 (ННММ), ЛДГ 4 (НМММ), ЛДГ 5 (ММММ).

Полипептидные цепи Н и М типа имеют одинаковую молекулярную массу, но в составе первых преобладают карбоновые аминокислоты, последних – диаминокислоты, поэтому они несут разный заряд и могут быть разделены методом электрофореза.

Кислородный обмен в тканях влияет на изоферментный состав ЛДГ. Где доминирует аэробный обмен, там преобладают ЛДГ 1 , ЛДГ 2 (миокард, надпочечники), где анаэробный обмен - ЛДГ 4 , ЛДГ 5 (скелетная мускулатура, печень). В процессе индивидуального развития организма в тканях происходит изменение содержания кислорода и изоформ ЛДГ. У зародыша преобладают ЛДГ 4 , ЛДГ 5 . После рождения в некоторых тканях происходит увеличение содержания ЛДГ 1 , ЛДГ 2 .

Существование изоформ повышает адаптационную возможность тканей, органов, организма в целом к меняющимся условиям. По изменению изоферментного состава оценивают метаболическое состояние органов и тканей.

Локализация и компартментализация ферментов в клетке и тканях .

Ферменты по локализации делят на 3 группы:

I – общие ферменты (универсальные)

II - органоспецифические

III - органеллоспецифические

Общие ферменты обнаруживаются практически во всех клетках, обеспечивают жизнедеятельность клетки, катализируя реакции биосинтеза белка и нуклеиновых кислот, образование биомембран и основных клеточных органелл, энергообмен. Общие ферменты разных тканей и органов, тем не менее, отличаются по активности.

Органоспецифичные ферменты свойственны только определенному органу или ткани. Например: Для печени – аргиназа. Для почек и костной ткани – щелочная фосфатаза. Для предстательной железы – КФ (кислая фосфатаза). Для поджелудочной железы – α-амилаза, липаза. Для миокарда – КФК (креатинфосфокиназа), ЛДГ, АсТ и т.д.

Внутри клеток ферменты также распределены неравномерно. Одни ферменты находятся в коллоидно-растворенном состоянии в цитозоле, другие вмонтированы в клеточных органеллах (структурированное состояние).

Органеллоспецифические ферменты . Разным органеллам присущ специфический набор ферментов, который определяет их функции.

Органеллоспецифические ферменты это маркеры внутриклеточных образований, органелл:

1) Клеточная мембрана: ЩФ (щелочная фосфатаза), АЦ (аденилатциклаза), К-Nа-АТФаза

2) Цитоплазма: ферменты гликолиза, пентозного цикла.

3) ЭПР: ферменты обеспечивающие гидроксилирование (микросомальное окисление).

4) Рибосомы: ферменты обеспечивающие синтез белка.

5) Лизосомы: содержат гидролитические ферменты, КФ (кислая фосфатаза).

6) Митохондрии: ферменты окислительного фосфорилирования, ЦТК (цитохромоксидаза, сукцинатдегидрогеназа), β-окисления жирных кислот.

7) Ядро клетки: ферменты обеспечивающие синтез РНК, ДНК (РНК-полимераза, НАД-синтетаза).

8) Ядрышко: ДНК-зависимая-РНК-полимераза

В результате в клетке образуются отсеки (компартменты), которые отличаются набором ферментов и метаболизмом (компартментализация метаболизма).

Среди ферментов выделяется немногочисленная группа регуляторных ферментов, которые способны отвечать на специфические регуляторные воздействия изменением активности. Эти ферменты имеются во всех органах и тканях и локализуются в начале или в местах разветвления метаболических путей.

Строгая локализация всех ферментов закодирована в генах.

Определение в плазме или сыворотке крови активности органо- органеллоспецифических ферментов широко используется в клинической диагностике.

При растворении в воде молекулы белка приобретают положительный заряд.

Как это свойство белка выразить с помощью значения рI ?

+ а. рI > 7 г. pI < 3

б. pI = 7 д. по знаку заряда нельзя судить об

в. pI< 7 интервале значения рI.

3. При растворении в воде белка, содержащего аминокислоты глутамат, аргинин, валин, молекулы белка приобрели положительный заряд. Что можно сказать о аминокислотном составе белка?

а. глутамата больше, чем аргинина + г. аргинина больше, чем глутамата

б. валина меньше, чем глутамата д. аргинина и глутамата одинаковое

в. валина больше, чем глутамата количество

4 . У белка крови альбумина значение величины рI равно 4,6. Это означает, что в водном растворе

+ а. белок заряжен отрицательно г. знак заряда может быть любой

б. белок заряжен положительно д. знак заряда определить невозможно

в. белок не имеет заряда

Сходство ферментов с неорганическими катализаторами заключается в том,

а. фермент обладает высокой специфичностью

б. скорость ферментативной реакции регулируется

+ г. в ходе катализа энергия системы остается постоянной

Отличие ферментов от неорганических катализаторов заключается в том, что

(2 ответа):

+ а. фермент обладает высокой специфичностью

+ б. скорость ферментативной реакции регулируется

в. в ходе катализа энергия химической системы изменяется

г. ферменты катализируют энергетически невозможные реакции

д. в ходе катализа направление химической реакции изменяется

7. Объясняя строение фермента, упомянули термины « кофактор и кофермент».

Следует уточнить:

+а. кофактор и кофермент находятся вне активного центра

б. только кофактор находится в активном центре

в. только кофермент находится в активном центре

г. кофактор и кофермент находятся в активном центре

д. кофермент находится вне активного центра

8. По определению: «Денатурация белка-это

а. потеря растворимости г. изменение пространственной

б. гидролиз всех пептидных связей структуры

в. частичный протеолиз +д. потеря природных свойств белка.

9. Обсуждая функции белка, применили термин «апофермент». Что имели ввиду:

а. сложный белок-фермент + г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент.

в. небелковую часть фермента

10. Активный центр сложного белка-фермента включает в себя участки:



а. только каталитический г. субстратный и аллостерический

б. только субстратный д. каталитический и аллостерический

+ в. субстратный и каталитический

11. В основу понятия «специфичность» фермента положены:

а. тип реакции г. строение продукта реакции

б. строение субстрата д. тип реакции, строение субстрата

+в. тип реакции и строение субстрата и продукта реакции.

12. При изучении свойств фермента обнаружили, что он действует на субстраты одного химического класса, имеющие сходное пространственное строение. Как определить вид возможной специфичности:

а. абсолютная + г. групповая, стереоспецифичность

б. группова я (относительная) д. абсолютная, стероспецифичность

в.стереоспецифичность

13. Теория « индуцированного изменения пространственной конфигурации фермента и субстрата» в процессе их взаимодействия выдвинута ученым

+ а . Кошландом г. Ментен

б. Лоури д. Фишером

в. Михаэлисом

14. Характеризуя белок, применили термин «холофермент». Что имели ввиду: это

+ а. сложный белок-фермент г. белковую часть фермента

б. простой белок-фермент д. инактивированный белок-фермент

в. небелковую часть фермента

15. Деление ферментов на классы основано на:

а. строении субстрата г. природе кофермента

б. строении продукта реакции д. типе реакции и природе кофермента

+в. типе катализируемой реакции

16. Ферменты, содержащие в активном центре ионы железа, дезактивируются под влиянием иона цианида. Определите тип ингибирования:

а. конкурентный в. неспецифический

б. неконкурентный +г. специфический



17. Вещество «эффектор, модулятор» действует на участок фермента:

а. субстратный г. субстратный и аллостерический

б. каталитический д. субстратный и каталитический

+ в. аллостерический

Сходство

1. Катализируют только энергетически возможные реакции. 2. Не изменяют направления реакции. 3. Ускоряют наступление равновесия реакции, но не сдвигают его. 4. Не расходуются в процессе реакции.

1. Скорость ферментативной реакции намного выше. 2. Высокая специфичность. 3. Мягкие условия работы (внутриклеточные). 4. Возможность регулирования скорости реакции. 5. Скорость ферментативной реакции пропорциональна количеству фермента.

Ферментативный катализ имеет свои особенности

Этапы катализа

В ферментативной реакции можно выделить следующие этапы:

1. Присоединение субстрата (S) к ферменту (E) с образованием фермент-субстратного комплекса (E-S).

2. Преобразование фермент-субстратного комплекса в один или несколько переходных комплексов (E-X) за одну или несколько стадий.

3. Превращение переходного комплекса в комплекс фермент-продукт (E-P).

4. Отделение конечных продуктов от фермента.

Механизмы катализа

Доноры

Акцепторы

СООН -NH 3 + -SH

СОО- -NH 2 -S-

1. Кислотно-основной катализ – в активном центре фермента находятся группы специфичных аминокислотных остатков, которые являются хорошими донорами или акцепторами протонов. Такие группы представляют собой мощные катализаторы многих органических реакций.

2. Ковалентный катализ – ферменты реагируют со своими субстратами, образуя при помощи ковалентных связей очень нестабильные фермент-субстратные комплексы, из которых в ходе внутримолекулярных перестроек образуются продукты реакции.

Типы ферментативных реакций

1. Тип "пинг-понг" – фермент сначала взаимодействует с субстратом А, отбирая у него какие либо химические группы и превращая в соответствующий продукт. Затем к ферменту присоединяется субстрат В, получающий эти химические группы. Примером являются реакции переноса аминогрупп от аминокислот на кетокислоты - трансаминирование.

Ферментативная реакция по типу "пинг-понг"

2. Тип последовательных реакций – к ферменту последовательно присоединяются субстраты А и В, образуя "тройной комплекс", после чего осуществляется катализ. Продукты реакции также последовательно отщепляются от фермента.

Ферментативная реакция по типу "последовательных реакций"

3. Тип случайных взаимодействий – субстраты А и В присоединяются к ферменту в любом порядке, неупорядоченно, и после катализа так же отщепляются.

Ферментативная реакция по типу "случайных взаимодействий"

Ферменты имеют белковую природу

Давно выяснено, что все ферменты являются белками и обладают всеми свойствами белков. Поэтому подобно белкам ферменты делятся на простые и сложные.

Простые ферменты состоят только из аминокислот – например, пепсин , трипсин , лизоцим .

Сложные ферменты (холоферменты) имеют в своем составе белковую часть, состоящую из аминокислот –апофермент , и небелковую часть – кофактор . Кофактор, в свою очередь, может называться коферментом или простетической группой. Примером могут быть сукцинатдегидрогеназа (содержит ФАД) (в цикле трикарбоновых кислот), аминотрансферазы (содержат пиридоксальфосфат) (функция), пероксидаза (содержит гем). Для осуществления катализа необходим полноценный комплекс апобелка и кофактора, по отдельности катализ они осуществить не могут.

Как многие белки, ферменты могут быть мономерами , т.е. состоят из одной субъединицы, и полимерами , состоящими из нескольких субъединиц.

Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа 2.Селективность 3. Оптимум pH 4. Интервалы температуры 5.Изменение структуры kat в ходе реакции 6. Увеличение скорости реакции.


Сравнение неорганических катализаторов ферментов Признаки сравнения Неорганические катализаторы Ферменты 1.Химическая природа Низкомолекулярные вещества, образованные 1 или нескольки- ми элементами. Белки – высокомолекуляр- ные полимеры 2.Селективность Низкая, универсальный kat – Pt ускоряет множ. реакций. Высокая. На каждую р-цию нужен свой фермент. 3. Оптимум pH Сильнокислая или щелочнаяНебольшой интервал, у кажд. органа – свой. 4. Интервалы температуры Очень широкие.35 – 42 градуса, затем денатурируют. 5.Изменение структуры kat в ходе реакции Изменяется незначительно, или не изменяется вовсе. Сильно изменяются и восстанавливаются в исходную структуру по окончании реакции. 6. Увеличение скорости реакции. В 100 – раз От 10 в 8 степени до 10 в 12 степени раз.




Общие: способны к растворению в воде и образованию коллоидных растворов; увеличивают скорость реакции; не расходуются в реакции; амфотерны; их присутствие не влияет на свойства продуктов реакции; характерно протекание цветных реакций; изменяют энергию активации, при которой может произойти реакция; не изменяют сколько-нибудь значительно температуру, при которой происходит реакция; способны к денатурации и гидролизу.


Специфические: Сочетание высочайшей активности с соблюдением строгого ряда условий; Специфичность действия по принципу «ключ – замок» или «рука – перчатка»; Стабильность; Обратимость действия: Е + S ES E + P,где Е – энзим; S – субстрат, P – продукт реакции, ES – фермент-субстратный комплекс.


Роль ферментов в жизнедеятельности организмов: Врожденные нарушения обмена; Взаимопревращения веществ; Биохимическая революция; Превращение энергии; Биосинтез; Фармакология; Ультраструктура мембран; Генетический аппарат; Питание; Клеточный метаболизм; Катализ; Физиологическая регуляция; Бактериальное брожение.



Похожие статьи