Открытие Периодического закона Д.И.Менделеевым. История открытия периодического закона и периодической системы элементов

Всё материальное, что нас окружает в природе, будь то космические объекты, обычные земные предметы или живые организмы, состоит из веществ. Разновидностей их существует много. Ещё в древности люди заметили, что они способны не только изменять своё физическое состояние, но и превращаться в другие вещества, наделённые иными свойствами по сравнению с первоначальными. Но вот законы, согласно которым происходят подобные преобразования материи, человек понял не сразу. Для того чтобы сделать это, необходимо было правильно выявить основу вещества и классифицировать существующие в природе элементы. Подобное стало возможным лишь только в середине XIX века с открытием периодического закона. Истории его создания Д.И. Менделеевым предшествовали долгие годы работы, а формированию данного рода знаний способствовал многовековой опыт всего человечества.

Когда были заложены основы химии?

Умельцы античных времён достаточно преуспели в литье и плавке различных металлов, зная множество секретов их трансмутации. Они передали свои знания и опыт потомкам, которые использовали их вплоть до времён Средневековья. Считалось, что неблагородные металлы вполне возможно превратить в ценные, что, собственно, и было основной задачей химиков вплоть до 16-го столетия. В сущности, в подобной идее были заложены ещё философско-мистические представления древнегреческих учёных о том, что вся материя строится из неких «первоэлементов», способных перевоплощаться один в другой. Несмотря на видимую примитивность такого подхода, он сыграл свою роль в истории открытия Периодического закона.

Панацея и белая тинктура

Занимаясь поиском первоосновы, алхимики свято верили в существование двух фантастических веществ. Одним из них был прославленный в легендах философский камень, именуемый также жизненным эликсиром или панацеей. Считалось, что подобное средство не только было безотказным способом превращения в золото ртути, свинца, серебра и прочих веществ, но также служило чудодейственным универсальным лекарством, исцеляющим любые человеческие недуги. Другой элемент, носивший название белой тинктуры, не относился к разряду столь эффективных, но наделялся способностью превращать в серебро остальные вещества.

Рассказывая предысторию открытия периодического закона, невозможно не упомянуть о знаниях, накопленных алхимиками. Они олицетворяли собой образец символического мышления. Представители этой полумистической науки создали некую химическую модель мира и процессов, происходящих в нём на космическом уровне. Стремясь понять суть всех вещей, они подробнейшим образом записывали лабораторные приёмы, оборудование и сведения о химической посуде, с большой скрупулёзностью и старательностью относясь к передаче своего опыта коллегам и потомкам.

Потребность в классификации

Значительных по объёму сведений о самых разных химических элементах к XIX веку накоплено было достаточно, что породило естественную необходимость и желание учёных их систематизировать. Но для проведения подобной классификации требовались дополнительные экспериментальные данные, а также не мистические, а реальные знания о строении веществ и сути основы устройства материи, которых пока не было. К тому же имеющиеся сведения о значении атомных масс известных в те времена химических элементов, на основе которых производилась систематизация, не отличались особой точностью.

Но попытки классификации в среде естествоиспытателей неоднократно предпринимались ещё задолго до осознания истинной сути вещей, составляющей ныне основу современной науки. А в указанном направлении работали многие учёные. Рассказывая кратко о предпосылках открытия периодического закона Менделеева, следует упомянуть о примерах подобных объединений элементов.

Триады

Учёные тех времён чувствовали, что свойства, проявляемые самыми разнообразными веществами, находятся в несомненной зависимости от величин их атомных масс. Понимая это, химик из Германии Иоганн Дёберейнер предложил свою систему классификации элементов, составляющих основу материи. Случилось это в 1829 году. И событие это было достаточно серьёзным продвижением в науке для того периода её развития, а также важным этапом в истории открытия периодического закона. Дёберейнер объединил известные элементы в сообщества, дав им наименование «триады». По существующей системе при этом масса крайних элементов оказывалась равна среднему от суммы атомных масс того члена группы, который находился между ними.

Попытки расширить границы триад

Недостатков в упомянутой системе Дёберейнера было достаточно. К примеру, в цепочке бария, стронция, кальция отсутствовал сходный с ними по строению и свойствам магний. А в сообществе теллура, селена, серы не хватало кислорода. Многие другие похожие вещества также не удалось классифицировать согласно системе триад.

Указанные идеи пытались развивать многие другие химики. В частности немецкий учёный Леопольд Гмелин стремился раздвинуть "тесные" рамки, расширив группы классифицируемых элементов, распределив их в порядке эквивалентных весов и электроотрицательности элементов. Его структуры образовывали не только триады, но и тетрады, пентады, но немецкому химику так и не удалось уловить суть периодического закона.

Спираль де Шанкуртуа

Ещё более сложную схему построения элементов придумал Александр де Шанкуртуа. Он расположил их на плоскости, свёрнутой в цилиндр, распределив по вертикалям с наклоном в 45° в порядке возрастаниях атомных масс. Как предполагалось, по линиям, параллельным оси данной объёмной геометрической фигуры, должны были располагаться вещества со сходными свойствами.

Но на деле идеальной классификации не получилось, так как на одну вертикаль иногда попадали отнюдь не родственные элементы. К примеру, рядом с щелочными металлами оказался совсем другого химического поведения марганец. И в одну "компанию" попали сера, кислород и совсем с ними не сходный элемент титан. Однако подобная схема тоже внесла свою лепту, заняв своё место в истории открытия периодического закона.

Другие попытки создания классификаций

Следом за описанными свою систему классификации предложил Джон Ньюлендс, заметив, что сходство в свойствах элементов, расставленных в соответствии с увеличением атомной массы, проявляет каждый восьмой член из получившегося ряда. Найденную закономерность учёному пришло в голову сравнить со структурой расположения музыкальных октав. При этом он присваивал каждому из элементов свой порядковый номер, располагая их горизонтальными рядами. Но подобная схема опять не получилась идеальной и была оценена весьма скептически в научных кругах.

С 1964 до 1970 гг. таблицы, упорядочивающие химические элементы, создавали также Одлинг и Мейер. Но подобные попытки снова имели свои недостатки. Всё это происходило уже накануне открытия Менделеевым периодического закона. А некоторые труды с несовершенными попытками классификации публиковались даже после того, как таблица, который мы пользуемся и по сей день, была представлена миру.

Биография Менделеева

Родился гениальный русский учёный в городе Тобольске в 1834 году в семье директора гимназии. В доме, кроме него, было ещё шестнадцать братьев и сестёр. Не обделённый вниманием, как самый младший из детей, Дмитрий Иванович с самого незначительного возраста поражал всех необыкновенными способностями. Родители, несмотря на трудности, стремились дать ему самое лучшее образование. Так, Менделеев окончил сначала гимназию в Тобольске, а затем Педагогический институт в столице, сохранив при этом в душе глубокий интерес к наукам. И не только к химии, но и к физике, метеорологии, геологии, технологии, приборостроению, воздухоплаванию и другим.

Вскоре Менделеев защитил диссертацию и стал доцентом Петербургского университета, где читал лекции по органической химии. В 1865 году он представил коллегам свою докторскую на тему «О соединении спирта с водой». Годом открытия периодического закона стал 1969 г. Но этому достижению предшествовало 14 лет напряжённой работы.

О великом открытии

Учитывая ошибки, неточности, а также позитивный опыт коллег, Дмитрий Иванович сумел систематизировать химические элементы самым удобным способом. Он также заметил периодическую зависимость свойств соединений и простых веществ, их формы от значения атомных масс, о чём и говорится в формулировке периодического закона, данного Менделеевым.

Но подобные прогрессивные идеи, к сожалению, далеко не сразу нашли отклик в сердцах даже русских учёных, которые приняли эту инновацию весьма настороженно. А в среде деятелей зарубежной науки, особенно в Англии и Германии, закон Менделеева и вовсе нашёл самых ярых противников. Но очень скоро положение изменилось. Что же послужило причиной? Гениальная смелость великого русского учёного спустя некоторое время явилась миру в доказательствах его блестящей способности научного предвидения.

Новые элементы в химии

Открытие периодического закона и структура периодической таблицы, созданной им, позволили не только осуществить систематизацию веществ, но и сделать ряд предсказаний о наличии в природе многих неизвестных в те времена элементов. Именно поэтому Менделееву удалось претворить на практике то, что до него не удавалось другим учёным.

Прошло всего пять лет, и догадки начали подтверждаться. Француз Лекок де Буабодран открыл новый металл, который назвал галлий. Его свойства оказались очень сходными с предсказанным Менделеевым в теории экаалюминием. Узнав об этом, представители учёного мира тех времён были ошеломлены. Но на этом удивительные факты совсем не закончились. Далее шведом Нильсоном был обнаружен скандий, гипотетическим аналогом которого оказался экабор. А близнецом экасилиция стал открытый Винклером германий. С тех самых пор закон Менделеева начал утверждаться и приобретать всё новых сторонников.

Новые факты гениального предвидения

Создатель настолько увлёкся красотой своей идеи, что взял на себя смелость сделать некоторые допущения, правомерность которых позднее самым блестящим образом подтвердилась практическими научными открытиями. К примеру, некоторые вещества Менделеев расположил в своей таблице вовсе не в соответствии с возрастанием атомных масс. Он предвидел, что периодичность в более глубоком смысле наблюдается всё-таки не только в связи с возрастанием атомного веса элементов, а ещё и по другой причине. Великий учёный догадался, что масса элемента зависит от количества в его строении каких-то более элементарных частиц.

Таким образом, периодического закона некоторым образом натолкнуло представителей науки на мысль о составляющих атома. А учёные вскоре наступившего 20-го столетия - века грандиозных открытий - многократно убедились, что свойства элементов зависят от величины зарядов атомных ядер и строения его электронной оболочки.

Периодический закон и современность

Таблица Менделеева, оставаясь неизменной в своей основе, впоследствии многократно дополнялась и переделывалась. В ней образовалась так называемая нулевая группа элементов, включающая в себя инертные газы. Успешно решена была также проблема размещения редкоземельных элементов. Но несмотря на дополнения, значение открытия периодического закона Менделеева в первоначальном варианте переоценить достаточно трудно.

Позднее, с и явления радиоактивности, были до конца поняты причины успеха подобной систематизации, а также периодичности свойств элементов различных веществ. Вскоре в указанной таблице нашли своё место также изотопы радиоактивных элементов. Основой классификации многочисленных членов ячеек стал атомный номер. А в середине XX века окончательно была обоснована последовательность расположения элементов в таблице, зависящая от заполнения орбиталей атомов передвигающимися с огромной скоростью вокруг ядра электронами.

Что способствовало подготовке открытия? Мы начинаем с анализа великого менделеевского открытия, поскольку оно было детально и всесторонне изучено нами в течение многих лет по архивным материалам. Но сначала необходимо сказать несколько слов о его предыстории.

В ходе познания химических элементов можно четко выделить три последовательные ступени, о которых говорилось во введении. Начиная с глубокой древности и вплоть до середины XVIII века элементы открывались и изучались человеком порознь, как нечто единичное. С середины XVIII века начался постепенный переход к открытию и изучению их целыми группами, или семействами, хотя одиночные открытия элементов продолжались и позднее. Групповое их открытие и изучение основывалось на том, что у некоторых из них обнаруживались общие физические или химические свойства, равно как и совместное присутствие ряда элементов в природе.

Так, во второй половине XVIII века в связи с возникновением пневматической (газовой) химии были открыты легкие неметаллы, которые в обычных условиях находятся в газообразном состоянии. Это были водород, азот, кислород и хлор. В тот же период были открыты кобальт и никель в качестве природных спутников железа.

А уже с первых лет XIX века открытие элементов стало происходить целыми группами, члены которых обладали общими химическими свойствами. Так, посредством электролиза были открыты первые щелочные металлы - натрий и калий, а затем щелочноземельные - кальций, стронций и барий. Позднее, в 60-х годах, с помощью спектрального анализа были открыты тяжелые щелочные металлы - рубидий и цезий, а также более тяжелые металлы будущей третьей группы - индий и таллий. Эти открытия основывались на близости химических свойств членов открываемых групп, а потому эти их члены связывались между собою уже в самом процессе их открытия.

В начале того же XIX века было открыто семейство платиновых металлов (кроме рутения, открытого позднее) в качестве природных спутников платины. В течение всего XIX века открывались редкоземельные металлы как члены единого семейства.

Вполне естественно, что первые классификации элементов строились на основе общности их химических свойств. Так, еще в конце XVIII века А. Лавуазье разделил все элементы на металлы и неметаллы. Такого деления придерживался и И. Берцелиус в первой половине XIX века. Тогда же стали выделяться первые естественные группы и семейства элементов. И. Деберейнер, например, выделил так называемые «триады» (скажем, литий, натрий, калий - «триада» щелочных металлов и т. д.). К числу «триад» относились такие, как хлор, бром, йод или сера, селен, теллур. При этом вскрывались такие закономерности, что значения физических свойств среднего члена «триады» (его удельный и атомный веса) оказывались средними по отношению к крайним членам. Что же касается галоидов (галогенов), то агрегатное состояние среднего члена (жидкий бром) было промежуточным по отношению к крайним членам - газообразному хлору и кристаллическому йоду. Позднее число включаемых в одну группу элементов стало увеличиваться до четырех и даже пяти.

Вся эта классификация строилась на основе учета лишь сходства элементов внутри одной естественной группы. Такой подход давал возможность образовывать все новые подобные группы и раскрывать взаимоотношения элементов внутри них. Этим готовилась вероятность последующего создания общей системы, охватывающей все элементы путем объединения уже найденных их групп в одно целое.

Что препятствовало переходу от особенного ко всеобщему? Примерно к началу 60-х годов XIX века ступень особенности в познании элементов практически была уже исчерпана. Возникла необходимость перехода на ступень всеобщности в их познании. Такой переход мог быть осуществлен путем взаимного связывания различных групп элементов и создания их единой общей системы. Подобного рода попытки все чаще стали предприниматься в течение 60-х годов в различных странах Европы - Германии, Англии, Франции. Некоторые из этих попыток содержали в себе уже явные намеки на периодический закон. Таков был, например, «закон октав» Ньюлендса. Однако, когда Дж. Ньюлендс доложил о своем открытии на заседании Лондонского химического общества, ему был задан ехидный вопрос: а не пытался ли автор открыть какой-либо закон, располагая элементы в алфавитном порядке их названий?

Это показывает, насколько чужда была химикам того времени сама идея выйти за пределы групп элементов (особенного) и искать пути раскрытия общего закона, охватывающего их (всеобщего). В самом деле, чтобы составить общую систему элементов, надо было сближать и сопоставлять между собой не только сходные элементы, как это делалось до тех пор внутри групп, но все вообще элементы, в том числе и несходные между собою. Однако в сознании химиков прочно засела мысль, что сближать между собою можно только одни сходные элементы. Эта мысль настолько глубоко укоренилась, что химики не только не ставили перед собой задачи перейти от особенного ко всеобщему, но полностью игнорировали и даже не замечали первых отдельных попыток осуществить такой переход.

В итоге сложилось серьезное препятствие, вставшее на пути открытия периодического закона и создания общей естественной системы всех элементов на его основе. Существование подобного препятствия неоднократно подчеркивал сам Д. Менделеев. Так, в конце своей первой статьи о сделанном им великом открытии он писал: «Цель моей статьи была бы совершенно достигнута, если бы мне удалось обратить внимание исследователей на те отношения в величине атомного веса несходных элементов, на которые, сколько то мне известно, до сих пор не обращалось почти никакого внимания».

Спустя два с лишним года, подводя итог разработке своего открытия, Д. Менделеев вновь подчеркнул, что «между несходными элементами и не искали даже каких-либо точных и простых соотношений в атомных весах, а только этим путем и можно было узнать правильное соотношение между изменением атомных весов и других свойств элементов».

Спустя двадцать лет после открытия в своем Фараде- евском чтении Д. Менделеев вновь вспоминал о препятствии, стоявшем на пути к этому открытию. Он привел первые выкладки на этот счет, в которых «видны действительные задатки и вызов периодической законности». И если последняя «высказана с определенностью лишь к концу 60-х годов, то этому причину... должно искать в том, что сравнению подвергали только элементы, сходственные между собой. Однако мысль сличить

вее элемента по величине их атомного веса... была чужда общему сознанию...». А потому, отмечает далее Д. Менделеев, попытки, подобные «закону октав» Дж. Ньюлендса, «не могли обратить на себя чьего-либо внимания», хотя в этих попытках «видно... приближение к периодическому закону и даже его зародыш».

Эти свидетельства самого Д. Менделеева для нас исключительно важны. Их глубокий смысл заключается в признании того, что основным препятствием на пути открытия периодического закона, то есть на пути перехода ко всеобщему в познании элементов, лежала привычка химиков, ставшая традицией, мыслить элементы в жестких рамках особенного (их сходства внутри групп). Такая привычка в мышлении не давала им возможности выйти за рамки особенного и перейти на ступень всеобщего в познании элементов. В результате открытие общего закона задержалось почти на 10 лет, когда, по свидетельству Д. Менделеева, ступень особенного была уже в основном исчерпана.

ППБ и его функция. Подобное препятствие, которое носит одновременно и психологический и логический (познавательный) характер, мы и называем познавательно-психологическим барьером (ППБ). Такой барьер необходим для развития научной мысли и выступает в качестве ее формы, удерживая ее достаточно долгое время на достигнутой ступени (в данном случае на ступени особенности) с тем, чтобы она (научная мысль) могла полностью исчерпать эту ступень и тем самым подготовить переход на следующую, более высокую ступень всеобщности.

Сейчас мы не можем рассматривать механизм возникновения подобного барьера и ограничимся лишь указанием на то, что он возникает автоматически. Однако после выполнения им своей познавательной функции он продолжает действовать и не снимается столь же автоматически, а как бы закрепляется, окостеневает и из формы развития научной мысли превращается в ее оковы. В таком случае научное окрытие происходит не само собой, легко и просто, но как преодоление стоявшего на пути познания препятствия,ППБ.

Сказанное мы относим пока что к данному разбираемому нами историко-научному событию и не ставим еще задачи выяснить, насколько часто подобная ситуация наблюдается. При этом мы идем не путем индуктивных обобщений, основанных на рассмотрении множества различных открытий а путем теоретического анализа пока только одного открытия, а именно - периодического закона. В дальнейшем нас будет интересовать, каким конкретным способом Д. Менделеев преодолел барьер, стоявший на пути процесса открытия, то есть на пути перехода со ступени особенного на ступень всеобщего в познании химических элементов.

Преодоление ППБ Д. Менделеевым. Периодической закон был открыт Д. Менделеевым 17 февраля (1 марта) 1869 года. (Очень подробно об открытии периодического закона рассказано в книгах Б. М. Кедрова «День одного великого открытия» и «Микроанатомия великого открытия». - Ред.) На обороте только что полученного им письма он стал делать выкладки, положившие начало открытию. Первой такой выкладкой была формула хлорида калия КС1. Что она означала?

Д. Менделеев писал тогда свои «Основы химии». Он только что закончил первую часть и приступил ко второй. Первая часть завершилась главами о галоидах (галогенах), в число которых входил хлор (С1), а вторая начиналась главами о щелочных металлах, к которым относился и калий (К). Это были две крайние, диаметрально противоположные в химическом отношении группы элементов. Однако они сближены в самой природе путем образования, например, хлористых солей соответствующих металлов, скажем, поваренной соли.

Создавая «Основы химии», Д. Менделеев обратил на это внимание и стал искать объяснение этому в близости атомных весов. У обоих элементов - калия и хлора: К = 39,1, 01 = 34,5. Значения обоих атомных весов примыкали непосредственно одно к другому, между ними не было других промежуточных значений, атомных весов других элементов. Два с лишним года спустя после открытия, подводя итоги разработки, Дмитрий Иванович отмечает, что ключом к периодическому закону явилась идея сближения между собой по близости количественной характеристики (атомного веса) элементов, качественно совершенно несходных между собой. Он писал: «Переход от С1 к К и т. п. также во многих отношениях будет соответствовать некоторому между ними сходству, хотя и нет в природе других столь близких по величине атома элементов, которые были бы между собой столь различны».

Как видим, здесь Д. Менделеев обнажил скрытый смысл своей первой записи «КС1», с которой начался процесс открытия. Оговоримся, что нам неизвестно, что натолкнуло его на мысль о сближении калия и хлора по величине их атомного веса. Возможно, он вспомнил в этот момент, что писал о хлористом калии в конце первой или в начале второй части «Основ химии». Но возможно, и какое-либо иное обстоятельство навело его на мысль о сближении калия и хлора по атомному весу. Мы могли зафиксировать лишь ту запись на бумаге, которая появилась из-под пера Д. Менделеева, но не то, что предшествовало ей в его голове. Как увидим ниже, история науки и техники знает немало случаев, когда известен не только первый шаг к открытию, но и мысль, мелькнувшая в голове его авт

Добавим, что теперь мы можем более конкретно разъяснить, в чем состоял переход Д. Менделеева от особенного ко всеобщему в познании элементов. Под их несходством он фактически понимал их химические различия, а сближение несходного по их атомному весу достигалось на основании присущего им общего физического свойства - их массы. Таким образом, переход от особенного ко всеобщему соответствовал переходу от рассмотрения их с химической стороны к рассмотрению с физической стороны.

Ниже мы еще не раз вернемся к подобному же варианту. Однако этот случай нельзя трактовать как переход от учета одних лишь качественных различий элементов к учету количественного их сходства. Количественная характеристика элементов учитывалась уже на ступени особенного, как мы видели на примере «триад» и теории атомности.

Итог преодоления ППБ. Итак, отмеченный Д. Менделеевым барьер был успешно преодолен, и познание элементов в результате этого вышло за пределы ступени особенности и поднялось на ступень всеобщности. Заметим, что до этого момента сам ученый не видел, в чем именно заключается препятствие, стоявшее на пути к открытию периодического закона. В его подготовительных работах, в частности в планах «Основ химии», составленных до 17 февраля (1 марта) 1869 года, нет даже намека на то, что надо сближать друг с другом несходные элементы. Только после того, как он догадался, ^то ключ к решению всей задачи лежит в этом сближении, он понял, в чем заключалось и препятствие, лежавшее на пути к открытию, то есть, говоря нашим языком, что за барьер стоял на этом пути.

Переступив ППБ в первый раз, Д. Менделеев тут же начал в деталях осуществлять переход от особенного к только еще открываемому всеобщему (закону). При этом он показывал, как надлежит включать в строящуюся общую систему элементов одну их группу за другой, то есть сближать несходные между собой элементы по величине их атомных весов. Другими словами, все построение общей системы элементов совершалось в процессе последовательного включения особенного (групп) во всеобщее (в будущую периодическую систему).

«В этих трех группах видна сущность дела. Галоиды обладают меньшими атомными весами, чем щелочные металлы, а эти последние -меньшими, чем щелочноземельные».

Так, осуществляя переход от ступени особенного на ступень всеобщего в познании элементов, Д. Менделеев довел до завершения свой замысел, включив в общую систему не только все уже известные тогда группы элементов, но и отдельные элементы, стоявшие до тех пор вне групп.

Замечу, что некоторые химики и историки химии пытались представить дело так, будто Дмитрий Иванович в своем открытии шел не от групп элементов (особенного), сопоставляя их одну с другой, а непосредственно от отдельных элементов (единичного), образуя из них последовательный ряд в порядке возрастания их атомных весов. Анализ многочисленных черновых записей Д. Менделеева полностью отвергает эту версию и неоспоримо доказывает, что открытие периодического закона было совершено в порядке четко выраженного перехода от особенного к всеобщему. Тем самым подтверждается, что барьер здесь возник именно как познавательно- психологическое препятствие, мешавшее выходу научной мысли химиков за пределы ступени особенного.

Обратим теперь внимание, что в итоговой периодиче-j ской системе элементов представлены в единстве обе ис-^ ходные йроТйвоположности - сходство й несходство (химические) элементов. Это можно показать уже на приведенной выше неполной табличке из трех групп. В ней по горизонтали располагаются химически сходные элементы (то есть группы), а по вертикали - химически несходные, но с близкими атомными весами (образующие периоды).

Так представление о ППБ и о его преодолении позволяет понять механизм и ход сделанного Д. Менделеевым великого открытия.

Конкретнее это открытие можно представить как преодоление барьера, разрывавшего до тех пор элементы на такие противоположные классы, как металлы и неметаллы. Так, уже первая менделеевская запись «КСЬ

свидетельствовала о том, что здесь сближены между собою не вообще несходные элементы, а элементы двух противоположных классов - сильный металл с сильным неметаллом. В итоговой развернутой системе элементов сильные металлы заняли левый нижний угол таблицы, а сильные неметаллы - правый верхний угол. В промежутке же между ними расположились элементы переходного характера, так что открытие Д. Менделеева и в этом отношении преодолевало барьер, мешавший выработать единую систему элементов.

Преодоление еще одного барьера. До сих пор мы говорили о барьере, стоявшем на пути познания от особенного ко всеобщему. Условно такой путь можно сравнить с индуктивным. Однако после открытия закона и даже в самом процессе его открытия возможен был обратный путь - от общего к особенному и единичному, который мы столь же условно можем сравнить с дедуктивным. Так, до открытия периодического закона атомный вес какого-либо элемента устанавливался как нечто сугубо единичное, как отдельный факт, могущий быть проверенным лишь опытным способом. Периодический же закон давал возможность проверять, уточнять и даже исправлять полученные эмпирически значения атомного веса в соответствии с местом, которое должен занять данный элемент в общей системе всех элементов. Например, подавляющее большинство химиков вслед за И. Берцелиусом считало бериллий полным аналогом алюминия и приписывало ему атомный вес Be = 14. Но место, соответствующее этому значению атомного веса в строящейся системе, было прочно занято азотом: N=14. Пустовало же другое место - между литием (Li=7) и бором (В=11) в группе магния. Тогда Д. Менделеев исправил формулу окисла бериллия с глиноземной на магнезиальную, в соответствии с чем получил вместо Ве= = 14 новый атомный вес - Be=9,4, то есть значение, лежащее между 7 и И. Тем самым он показал, что всеобщее (закон) позволяет устанавливать единичное - свойство отдельного элемента, которое подчинено этому закону, причем устанавливать без нового обращения к опытному исследованию,

По этому поводу сам ученый писал через 20 лет после открытия своего закона: «Веса атомов элементов, до периодического закона, представляли числа чисто эмпирического свойства до того, что... могли подлежать критике лишь по методам их определения, а не по их величине, то есть в этой области приходилось идти ощупью, покоряться акту, а не обладать им...»

Можно сказать, что сугубый эмпиризм, или «покорение фактам», исключал возможность определять величину атомного веса, исходя из теоретических соображений, и требовал идти только опытным путем. Соответственно сказанному выше такое препятствие назовем тоже своеобразным барьером, который заставлял химиков быть рабами фактов, подчиняться им, но не владеть ими. Д. Менделеев в ходе построения своей системы преодолел этот барьер, показав, что всеобщее (закон) может служить критерием правильности установленного факта.

При этом и в данном случае мы видим, что на ступени эмпирического познания подобный барьер играет положительную роль (пока эта ступень не исчерпана), препятствуя неоправданному выходу научной мысли за пределы фактов, в область умозрительных натурфилософских построений. Когда же ступень односторонне проводимых эмпирических исследований исчерпана, названный барьер становится препятствием для дальнейшего прогресса научной мысли и должен быть преодолен. Это мы покажем ниже еще на одном примере, который продемонстрировало все то же открытие Д. Менделеева.

Еще о переходе от всеобщего к единичному и особенному. Речь идет о возможности наперед предсказывать не открытые еще элементы с их свойствами на основании пустых мест в только что построенной периодической системе. Уже в день открытия периодического закона Д. Менделеев предсказал три таких неизвестных еще металла; среди них - аналог алюминия с предположительным атомным весом?=68. Вскоре после этого он вычислил теоретически, опираясь на открытый им закон (всеобщее), многие другие свойства этого металла, назвав его условно экаалюминием, в том числе его удельный вес, равный 5,9 - 6, летучесть его соединений (откуда заключил, что он будет открыт с помощью спектроскопа). Именно так и открыл новый металл (галлий) П. Лекок де Буабодран в 1875 году.

Однако удельный вес галлия ой нашел значительно меньшим по сравнению с предсказанным. Поэтому заключил, что галлий - это вовсе не экаалюминий, предвиденный автором закона, а какой-то совершенно другой металл. В результате менделеевское предсказание объявлялось не подтвержденным. Но это не обескуражило Д. Менделеева. Он сразу догадался, что галлий восстанавливался fi помощью металлического натрия, у которого удельный вес очень мал, меньше, чем у воды. Легко было допустить, что первые порции восстановленного галлия были недостаточно хорошо очищены от примесей натрия, который и снизил полученное в опыте значение удельного веса найденного металла. Когда же П. Лекок де Буабодран, следуя совету Дмитрия Ивановича, очистил свой галлий от примесей, то найденное новое значение его удельного веса в точности совпало с предсказанным и оказалось равным 5,95.

Получилось так, что Д. Менделеев своим теоретическим взором видел новый элемент лучше, нежели 11. Лекок де Буабодран, державший этот элемент в руках. Таким образом, и здесь барьер, выступающий как слепое, некритическое отношение к любым полученным на опыте данным, был преодолен, а периодический закон выступил как критерий проверки правильности данных опыта.

Иногда дело представляется так, что сначала Д. Менделеев шел в своем открытии путем индукции (от частного к общему), а потом - путем дедукции (от общего к частному). В действительности же уже в ходе самого открытия нового закона он все время проверял правильность еще только строящейся общей системы элементов посредством дедуктивных умозаключений, как это мы видели на примере бериллия и будущего экаалюминия. Это значит, что индукция и дедукция у Д. Менделеева как логические приемы не были разорваны между собою, а функционировали в полном согласии и единстве, органически дополняя друг друга.

Можно сказать, что до Д. Менделеева в сознании химиков утвердился своего рода барьер, который исключал возможность какого-либо предвидения новых элементов и целенаправленного их поиска. Такой барьер тоже был разрушен сделанным открытием. «До периодического закона, - писал ученый, - простые тела представляли лишь отрывочные, случайные явления природы, не было поводов ждать каких-либо новых, а вновь находимые в своих свойствах были полной неожиданной новинкой. Периодическая законность первая дала возможность видеть неоткрытые еще элементы в такой дали, до которой не вооруженное этой закономерностью химическое зрение до тех лор не достигало и при этом новые элементы, еще не открытые, рисовались с целой массой свойств».

Итак, из анализа истории великого открытия мы уже можем сделать определенные выводы, ответить на вопросы, которые мы поставили в конце нашего методологического введения:

1. ППБ действительно существуют.

2. Они возникают и действуют, не допуская преждевременного выхода за рамки данной ступени развития, пока она себя не исчерпала (ступени особенности).

3. Поскольку, однако, эта функция ППБ выполнена, сами ППБ становятся тормозом для дальнейшего прогресса науки (для перехода ко всеобщему), а потому они преодолеваются, что и составляет самую суть научных открытий.

Но, разумеется, мы отлично понимаем, что нельзя ограничиться разбором одного только открытия, хотя бы и великого, для подтверждения выдвинутого положения о ППБ как общего. Для этого нужно, конечно, рассмотреть другие открытия, причем в достаточно большом числе. Этим мы и займемся в следующих главах, причем начнем издалека.

Металлы и силикаты, оксиды и углеводы, вода и белки Как сильно различаются они по составу, свойствам, строению. Поистине удивительно многообразие веществ, из которых состоит окружающий нас мир. А если принять во внимание и химические соединения, которые не существуют в природе, но полученные учеными в лабораториях, в списки уже известных веществ придется включать миллионы наименований. И эти списки непрерывно расширяются

В этом безбрежном море было бы невозможно ориентироваться, если бы не было в руках ученых надежного «компаса». Все вещества образованы лишь из нескольких десятков химических элементов, а сами элементы беспрекословно подчиняются единому закону. Этот важный закон – Периодический закон,- открытый в 1869г. великим русским химиком Д. И. Менделеевым, служит одним из краеугольных камней фундамента, на котором зиждется химическая наука.

Меня привлекла тема "Д. И. Менделеев и Периодический закон" тем, что захотелось подробно узнать и понять личность великого ученого, открытие им Периодического закона.

Предпосылки открытия

Периодического закона Д. И. Менделеева.

Еще на заре цивилизации люди находили в природе некоторые химические элементы, среди них медь, железо, серебро, золото и др. Эти металлы, в частности медь и железо, имели такое большое значение в жизни человека, что в честь них были названы целые исторические эпохи (бронзовый и железный века).

Значительный вклад в разработку атомических учений внесли древнегреческие философы: Демокрит (460-370гг. до н. э.), Эпикур (341-270гг. до н. э.), Аристотель (384-322гг. до н. э.). Атомистическая теория древнегреческих философов была результатом строго логичного рассуждения о первоначалах природы, о важнейших принципах жизни. Необходимо было найти единое, неизменное, неуничтожимое в многообразии окружающих вещей. Так возникла мысль о мельчайших, неделимых, неуничтожаемых телах (атомах), составляющих любую вещь.

Последовавшие затем почти тысячелетнее засилье религии и мракобесия привело к тому, что атомистика была предана забвению и возродилась лишь в XVII в. на качественно новом уровне.

Роберт Бойль (1627-1691гг.), английский физик и химик, внес большой вклад в становление химии как науки. Главная заслуга Бойля состоит в том, что он стал рассматривать химические элементы не как некие отвлеченные понятия, а как реально существующие частицы. Он считал, что в действительности химических элементов может быть немного – и тем самым нацеливал на их поиск в природе. Р. Бойль дал принципиально новое понятие о химическом элементе как строго индивидуальном материальном теле, состоящем из атомов. Ключ Бойля "состав – свойства" открывал путь химическому производству веществ с заданными свойствами.

Якоб Берцелиус (1779-1848гг.), шведский химик, определил атомные массы 45 химических элементов в 1818г. Опубликовал их в виде таблице. В том же году он провел сопоставление процентного состава 2000 химических соединений и указал их "атомные веса" (он не пользовался понятием "молекула", а рассматривал молекулы как атомы различной степени сложности). Для обозначения химических элементов Берцелиус предложил использовать начальные буквы их латинских названий. По его мнению, для обозначений химических соединений следовало использовать буквы и цифры, чтобы их легко можно было писать и печатать. Они должны были наглядно отражать соотношение элементов в соединениях, указывать относительные количества составных частей, образующих вещество, и, наконец, выражать численный результат анализа так же просто и понятно, как алгебраические формулы. Берцелиус открыл новые химические элементы: церий, селен и торий. Ему первому удалось получить в свободном состоянии кремний, титан, тантал, цирконий, а также ванадий.

Иоганн Деберейнер (1780-1849гг.), немецкий химик, при сопоставлении атомных весов некоторых химически сходных элементов нашел, что для многих широко распространенных в природе элементов эти числа довольно близки, а для таких элементов, как Fe, Co, Ni, Cr, Mn, они практически одинаковы. Кроме того, он отметил, что относительный "атомный вес" SrO представляет собой приблизительное среднее арифметическое из "атомных весов" CaO и BaO. На этой основе Деберейнер предложил "закон триад", состоящий в том, что сходные по химическим свойствам элементы могут быть сведены в группы по три элемента (триады), например Cl, Br, J или Sr, Ca, Ba. При этом атомный вес среднего элемента триады близок к половине суммы атомных весов крайних элементов.

Другие химики интересовались закономерностями в изменении значений атомных масс в группах сходных элементов. Первой из таких сопоставлений была так называемая "винтовая линия" А. де Шанкуртуа. В своих сообщениях он сделал попытку сопоставить свойства элементов в виде кривой. Он нанес на боковую поверхность цилиндра линию под углом 45° к его основанию. Поверхность цилиндра разделена вертикальными линиями на 16 частей (атомная масса кислорода равна 16). Атомные массы элементов и молекулярные массы простых тел были изображены в виде точек на винтовой линии в соответствующем масштабе. Если развернуть образующую цилиндра, то на плоскости получится ряд отрезов прямых, параллельных друг другу. При таком расположении сходные элементы оказываются друг под другом далеко не всегда. Так, в группу кислорода попадает титан; марганец включен в группу щелочных металлов; железо – в группу щелочноземельных. Однако, "винтовая линия" Шанкуртуа фиксирует и некоторые правильные соотношения между атомными массами ряда элементов, но, тем не менее, не отражает периодичности свойств элементов.

Одной из предпосылок открытия Периодического закона послужили решения международного съезда химиков в Карлсруэ в 1860г. , когда окончательно утвердилось атомно-молекулярное учение, были приняты первые единые определения понятий молекулы и атома, а также атомного веса, который мы теперь называем относительной атомной массой. Именно это понятие как неизменную характеристику атомов химических элементов Д. И. Менделеев положил в основу своей классификации. Он писал: "Масса вещества есть именно такое свойство его, от которого должны находиться в зависимости все остальные свойства. Поэтому ближе или естественнее всего искать зависимость между свойствами и сходствами элементов, с одной стороны, и атомными их весами – с другой". Предшественники Д. И. Менделеева сравнивали между собой только сходные элементы, а поэтому и не смогли открыть Периодический закон. В отличие от них Д. И. Менделеев обнаружил периодичность в изменении свойств химических элементов, расположенных в порядке возрастания величин их атомных масс, сравнивая между собой все известные ему, в том числе и несходные, элементы.

Д. И. Менделеев в своем открытии опирался на четко сформулированные исходные положения:

– Общее неизменное свойство атомов всех химических элементов – их атомная масса;

– Свойства элементов зависят от их атомных масс;

– Форма этой зависимости - периодическая.

Рассмотренные выше предпосылки можно назвать объективными, то есть не зависящими от личности ученого, так как они были обусловлены историческим развитием химии как науки.

Но без личностных качеств великого химика, которые составляют субъективную предпосылку открытия Периодического закона, вряд ли он был бы открыт в 1869г. Если бы его открыл какой-нибудь другой химик, вероятно, это произошло бы намного позже. Энциклопедичность знаний, научная интуиция, умение обобщать, постоянное стремление к познанию неведомого, дар научного предвидения Д. И. Менделеева сыграли свою немалую роль в открытии Периодического закона.

Открытие Д. И. Менделеевым

Периодического закона.

1 марта 1969г. научная общественность всего мира отмечала столетие одного из величайших законов современного естествознания – Периодического закона химических элементов. Наука и техника сделала за этот период гигантские скачки. Казалось бы, значение Периодического закона Д. И. Менделеева должно было потускнеть перед грандиозными достижениями современной науки. Напротив, в наши дни Периодический закон химических элементов представляется рельефнее и значительнее, чем 100 лет назад.

Открытие Периодического закона внесло ясность и порядок в многообразии, и разрозненные сведения о природе и химических свойствах элементах и их соединениях. Химия из эмпирического искусства преобразовалась в подлинную, точную науку. Привычная простота и четкость таблицы Д. И. Менделеева скрывают теперь от нас гигантскую и кропотливую работу по освоению и переработке всего того, что было известно до Д. И. Менделеева. Ему пришлось выполнить грандиозную работу, чтобы стала возможной и осуществимой догадка о существовании закона периодичности свойств элементов.

К 1869г. были открыты только 63 элемента. Из них достаточно хорошо изучены с точно определенными атомными массами только 48, в то время как атомная масса остальных элементов была определена неточно или неверно. Расположив элементы в ряд по возрастанию неверных, или неточно определенных, атомных масс, ни один химик в мире не мог бы обнаружить общей закономерности в их свойствах. Только непостижимая способность обобщения позволила увидеть всеобъемлющую простоту закона. Для этого необходима великая научная смелость, и этой научной смелостью обладал Д. И. Менделеев. Открытый им Периодический закон отвечал самому главному требованию – возможности предсказания нового и предвидения неизвестного. Закон Д. И. Менделеева в этом плане не имеет равных себе.

В самом деле, для того чтобы расположить химические элементы в соответствии с периодическим законом и построить первую Периодическую таблицу, Д. И. Менделеев должен был оставить в ней «пустые» места и принять новые значения атомных масс для многих элементов, т. е. предсказать новые элементы. Для этого нужна уверенность в истинности вновь открытого закона, необходима смелость и решимость, что и отличает Д. И. Менделеева от всех его предшественников.

Более 30 лет Д. И. Менделеев работал над открытием и совершенствованием Периодического закона. Будучи уверенным, что он открыл новый естественный закон природы, Д. И. Менделеев на основании его предсказывает существование 12 неизвестных в то время науке элементов, для трех из них дает подробное описание их свойств, а также свойств их соединений и даже тех способов, при помощи которых они впоследствии могут быть получены.

Все предсказания, сделанные Д. И. Менделеевым на основе Периодического закона, а также исправления атомных масс элементов блестяще подтвердились.

Периодический закон стал законом предвидения в химии. Исследования Д. И. Менделеева дали прочный и надежный фундамент дальнейшего развития науки. Они послужили основой для объяснения строения атомов и их соединения. "Нет ни одного, сколь-либо общего закона природы,- писал Д. И. Менделеев,- который бы основался сразу; всегда его утверждению предшествует много предчувствий, а признание закона наступает не тогда, когда он вполне сознан во всем его значении, а лишь по утверждению его следствий опытами, которые естествоиспытатели должны признавать высшею инстанциею своих соображений и мнений". Вполне естественно, что открытию такого всеобъемлющего закона природы также предшествовал длительный этап "предчувствий". До Д. И. Менделеева было много ученых, которые предлагали свои таблицы и графики элементов и отдельные частные закономерности о соотношении свойств элементов. Не случайно, что некоторые из них после открытия Д. И. Менделеевым выступали с претензиями на первенство открытия. Большое значение для установления периодичности химических элементов имело точное определение основных химических понятий "элемент" и "простое тело". Большая заслуга в определении этих понятий принадлежит Д. И. Менделееву, который, в отличие от своих предшественников, создал систему элементов, а не простых тел или эквивалентов. "Разнообразные периодические отношения принадлежат элементам,- писал Д. И. Менделеев,- а не простым телам, и это весьма важно заметить, потому что Периодический закон относится к элементам, так как им свойствен атомный вес, а простым телам, как и сложным, частичный вес". В то время почти все предшественники Д. И. Менделеева в своих поисках пользовались весьма расплывчатыми понятиями элемента и простого тела и зачастую оперировали не только истинными атомными массами, а эквивалентами. При существовавшей путанице таких понятий, как "атомная масса", "молекулярная масса", "эквивалент", многие химики, занимавшиеся поиском закономерностей между элементами, естественно, не могли обнаружить внутренней связи между их физическими и химическими свойствами. Так, например, У. Одлинг в 1865г. в своей книге "Курс практической химии" дал таблицу, озаглавив ее "Атомные веса и знаки элементов". Эта таблица внешне была сходна с первой таблицей Д. И. Менделеева. Однако сходство было чисто вешним, и поэтому Д. И. Менделеев справедливо указал, что У. Одлинг ничего не говорит о смысле своей таблице и нигде о ней не упоминал.

Все предшественники Д. И. Менделеева не смогли сделать всеобъемлющих обобщений из отмеченных ими закономерностей.

В течение многих лет Д. И. Менделеев выполнял гигантскую работу. В центре его внимания в эти годы было изучение связи химических свойств веществ с их физической структурой – центральная проблема, над которой работали химики того времени.

Деятельность в этой области и подготовила Д. И. Менделеева к открытию периодической закономерности в изменении свойств элементов. Читая курс неорганической химии, в 1868г. он приступил к составлению учебника "Основы химии", который был издан в 1869г. Работая над ним, Д. И. Менделеев искал логическую основу для распределения материала второй части своего курса. Поиски привели его к мысли сопоставить группы сходных элементов. При этом он заметил, что все элементы можно расположить в порядке возрастания атомных масс, объединив их в группы. Таким образом, и появилась первая таблица элементов, озаглавленная "Опыт системы элементов, основанной на их атомном весе и химическом сходстве". Д. И. Менделеев сразу же понял, что эта таблица не просто служит обоснованием логического плана расположения материала курса, а отражает определенный закон природы, устанавливающий тесную связь между всеми известными элементами.

6 марта 1869г. составленная Д. И. Менделеевым таблица была доложена на заседании Русского химического общества, а затем опубликована в журнале "Русское химическое общество".

В 1871г. он опубликовал две классические статьи о Периодическом законе: "Естественная система элементов и применение ее к указанию свойств неоткрытых элементов" и "Периодическая закономерность химических элементов". Эти статьи явились обобщением огромной работы, выполненной Д. И. Менделеевым по уточнению формулировки открытого им закона и важнейших следствий и выводов из него. Здесь ученый впервые называет свое открытие Периодическим законом.

Излагая сущность открытого им закона, он формулировал его в следующих словах: "свойства простых тел, также формы и свойства соединений элементов, находятся в периодической зависимости от величины атомных весов элементов". Появление в русской и иностранной печати сообщений и статей Д. И. Менделеева по периодическому закону, а также рефератов его статей и выход в свет "Основ химии", первого в истории курса, в котором расположение материала базировалось на Периодическом законе, мало обратило внимание со стороны ведущих химиков того времени.

Однако прошло всего лишь около 4 лет со времени предсказаний Д. И. Менделеева, как одно из них получило блестящее подтверждение. Известный французский химик-аналитик Лекок де Буабодран 27 августа 1875г. сообщил об открытии нового элемента, названного им галлием, и описал его свойства. Ознакомившись с работой французского ученого, Д. И. Менделеев тотчас пришел к выводу, что новый элемент есть не что иное, как предсказанный им экаалюминий. Он немедленно направил письмо Лекок де Буабодрану и заметку во французский журнал ("Доклады Парижской Академии наук"). Лекок де Буабодран был удивлен этим письмом и заметкой, опубликованной в журнале. Он не слышал о существовании химика Д. И. Менделеева и к тому же считал, что свойства нового элемента может лучше знать он, который открыл и экспериментально изучил их. Д. И. Менделеев писал, что определение Лекок де Буабордраном плотности этого элемента неточно; по расчетам Д. И. Менделеева, плотность галлия должна быть равна 6. Лекок де Буабодран повторил определение плотности элемента и нашел, что она равна 5,96.

Открытие галлия было блестящим доказательством предсказаний Д. И. Менделеева и произвело огромное впечатление в ученом мире. Его статьи, которые ранее оставались почти не замеченными, теперь привлекли всеобщее внимание.

В 1879г. шведский химик Л. Нильсон при исследовании минералов эвксенита и гадолинита открыл новый элемент, названный им скандием. Свойства этого элемента оказались в точности совпадающими с теми, которые были предсказаны Д. И. Менделеевым на основании периодического закона.

И, наконец, немецкий химик, профессор Горной академии во Фрейберге К. А. Винклер, анализируя минерал аргиродит, обнаружил в нем новый неизвестный элемент и назвал его германием. Свойства германия совпадали с предсказаниями Д. И. Менделеевым свойствами экасилиция.

Эти открытия были блестящим триумфом Периодического закона. Скептицизм и сомнения, существовавшие у некоторой части ученых по отношению к Периодическому закону, сменились полнейшей уверенностью в его величайшем научном значении. Периодический закон стал прочной базой для разнообразных исследований химиков и физиков всего мира. Настала эпоха систематического изучения всех элементов и возможных новых типов их соединения.

К концу прошлого столетия Периодический закон стал общепризнанным. Лежащие в его основе представления о вечности, неизменности атомов и уверенность, что относительная масса атомов одного и того же элемента строго одинакова, казались незыблемыми. Ученые-химики считали своей задачей открытие еще неизвестных элементов, которые должны занять пустующие клетки в Периодической системе Д. И. Менделеева. Однако новые блестящие открытия ученых подвергли Периодический закон серьезным испытаниям. Так, в 1892г. английский физик Р. Дж. Рэлей, исследуя плотность газов воздуха, нашел новый элемент, который был назван аргоном. В следующем году открыт еще один инертный газ – гелий, присутствие которого задолго до этого было спектроскопически обнаружено в солнечной атмосфере. Эти открытия поставили несколько в тупик Д. И. Менделеева, так как для этих элементов не находилось места в Периодической системе. Другой английский физик и химик У. Рамзай предложил аргон и гелий разместить в периодической системе в особый нулевой группе. У. Рамзай предсказал одновременно существование и других инертных газов и, пользуясь методом Д. И. Менделеева, заранее описал их возможные свойства. Действительно, вскоре были открыты неон, криптон и ксенон. Они составили нулевую группу инертных элементов и тем самым были существенным дополнением к Периодической системе. В настоящее время эти элементы формально нельзя назвать инертными, так как получены соединения для криптона и ксенона. Поэтому их теперь размещают в VIII группе Периодической системы.

Одним из важных следствий Периодического закона является современное учение о строении атома.

В конце XIX столетия был открыт электрон. Возникли первые модели строения атома, в основу которых положили гипотезу о равномерном распределении положительного и отрицательного электричества. Э. Резерфорд с помощью опытов сделал вывод, что основная масса вещества сосредоточена в ядре атома. Ядро же атома по сравнению с объемом всего атома имеет весьма малый объем. Весь положительный заряд сосредоточен в ядре. Вокруг положительно заряженного ядра атома движутся отдельные электроны в количестве, равном заряду ядра. На основании опытных данных Э. Резерфорд рассчитал заряд ядер некоторых атомов. Ван-ден-Брэк, сопоставивший результаты измерения заряда ядра атома, сделал следующее предположение: величина заряда ядра атома каждого химического элемента, измеренная в элементарных единицах заряда, равна атомному номеру, т. е. порядковому номеру, который данный элемент имеет в Периодической таблице.

Этот вывод позволил, наконец, понять истинную природу Периодического закона Д. И. Менделеева. стало ясно, что лежит в основе таблицы Д. И. Менделеева, чем отличаются атомы различных химических элементов и что определяет их химическую индивидуальность. Таким образом, все атомы по своему строению аналогичны, т. е. атом любого химического элемента состоит из ядра и электронов, количество которых определяется зарядом ядра.

В соответствии с теорией Н. Бора электроны в атоме располагаются по слоям, причем было найдено, что количество слоев в атоме элемента соответствует номеру периода Периодической системы.

В свете этих открытий Периодический закон Д. И. Менделеева в настоящее время формулируется так: "Свойства химических элементов находится в периодической зависимости от зарядов их атомных ядер, или порядкового номера элемента".

Основным и исходным пунктом таких грандиозных успехов в науке за сравнительно короткий срок, является открытие Д. И. Менделеева Периодического закона. В то же время эти открытия не только не умалили, а, наоборот, расширили горизонты Периодического закона, превратили его в могучий инструмент познаний природы. Он стал основой для дальнейшего развития науки. Сбылись пророческие слова Д. И. Менделеева, сказанные в Английском химическом обществе 23 мая 1889г. , о том, что Периодический закон, расширив горизонт зрения, как инструмент требует дальнейших улучшений для того, чтобы ясность видения еще новых дальнейших элементов была достаточна для полной уверенности.

Обращаясь к английским коллегам, он подчеркивал, что Периодический закон ждет не только новых приложений, но и усовершенствований.

Успехи современной химии, успехи атомной и ядерной физики, синтез искусственных элементов стали возможными благодаря Периодическому закону. Вместе с тем успехи атомной физики, а также открытие новых методов исследования, развитие квантовой механики, в свою очередь, расширили и углубили сущность Периодического закона. Развитие науки показало, что Периодический закон до конца еще не познан и не завершен, что он много шире и глубже, чем мог предположить Д. И. Менделеев, чем думали до недавнего времени ученые. Так, оказалось, что закону периодичности подчиняется не только строение внешних оболочек атома, но и тонкая структура атомных ядер. Очевидно, что закономерности, которые управляют сложным и во многом в настоящее время еще не понятым миром элементарных частиц, также имеют в своей основе периодический характер.

Будущее Периодической таблицы.

Попробуем заглянуть в будущее. Рассмотрим нижнюю часть таблицы подробно, введя в нее элементы, открытые в последние годы.

Химические свойства полученного в 1998г. элемента № 114 можно ориентировочно предсказать по положению в Периодической системе. Это – непереходной элемент, находящийся в группе углерода, и по свойствам должен напоминать свинец, расположенный над ним. Впрочем, химические свойства нового элемента недоступны для непосредственного изучения – элемент зафиксирован в количестве нескольких атомов и недолговечен.

У элемента - № 118 – целиком заполнены все семь электронных уровней. Поэтому вполне естественно, что он находится в группе инертных газов – над ним расположен радон. Таким образом, 7-й период таблицы Д. И. Менделеева завершен. Эффектный финал столетия!

В течение всего XXв. человечество в основном заполняло именно этот седьмой период, и сейчас он простирается от элемента № 87 – франция. Попробуем решить другой вопрос. Сколько же всего будет элементов в 8-м периоде? Поскольку прибавление каждого электрона соответствует появлению нового элемента, то просто надо сложить максимальное число электронов на всех орбиталях от s до g: 2+6+10+14+18=50. Долгое время так и предполагали, однако компьютерные расчеты показывают, что в 8-м периоде будет не 50, а 46 элементов. Итак, 8-й период будет простираться от элемента № 119 до № 164.

Внимательное рассмотрение Периодической системы позволяет отметить еще одну простую закономерность. p-Элементы впервые появляются во 2-м периоде, d-элементы – в 4-м, f-элементы – в 6-м. Получился ряд четных чисел: 2, 4, 6. эта закономерность определяется правилами заполнения электронных оболочек. Теперь понятно, почему g-элементы появятся в 8м периоде. Простое продолжение ряда четных чисел! Существует и более дальние прогнозы, но они основаны на достаточно сложных расчетах.

Очень интересно, существует ли теоретически последний элемент Периодической системы? Современные расчеты ответить на этот вопрос пока не могут, так что он наукой еще не решен.

Мы достаточно далеко зашли в наших прогнозах, может быть, даже в XXII в. , что, впрочем, вполне объяснимо. Попытаться бросить взгляд в отдаленное будущее – вполне естественное желание для каждого человека.

Заключение.

Значение Периодического закона и Периодической системы химических элементов

Д. И. Менделеева.

Периодический закон Д. И. Менделеева имеет исключительно большое значение. Он положил начало современной химии, сделал ее единой, целостной наукой. Элементы стали рассматриваться во взаимосвязи, в зависимости от того, какое место они занимают в Периодической системе. Как указывал Н. Д. Зелинский, Периодический закон явился "открытием взаимной связи всех атомов в мироздании".

Химия перестала быть описательной наукой. С открытием Периодического закона в нем стало возможным научное предвидение. Появилась возможность предсказывать и описывать новые элементы и их соединения. Блестящий пример тому – предсказание Д. И. Менделеевым существования еще не открытых в его время элементов, из которых для трех – Ga, Sc и Ge – он дал точное описание их свойств.

На основе закона Д. И. Менделеева были заполнены все пустые клетки его системы от элемента с Z=1 до Z=92, а также открыты трансурановые элементы. И сегодня этот закон служит ориентиром для открытия или искусственного создания новых химических элементов.

Периодический закон послужил основой для исправления атомных масс элементов. У 20 элементов Д. И. Менделеевым были исправлены атомные массы, после чего эти элементы заняли свои места в Периодической системе.

Большое общенаучное и философское значение Периодического закона и системы состоит в том, что он подтвердил наиболее общие законы развития природы (единства и борьбы противоположностей, перехода количества в качество, отрицание отрицания).

Учение о строении атома привело к открытию атомной энергии и использованию ее для нужд человека. Можно без преувеличения сказать, что Периодический закон является первоисточником всех открытий химии и физики XX в. Он сыграл выдающую роль в развитии других, смежных с химией естественных наук.

Периодический закон и система лежат в основе решения современных задач химической науки и промышленности. С учетом Периодической системы химических элементов Д. И. Менделеева ведутся работы по получению новых полимерных и полупроводниковых материалов, жаропрочных сплавов, веществ с заданными свойствами, по использованию ядерной энергии, исследуются недра Земли, Вселенная

Вещие слова Д. И. Менделеева: "Посев научный взойдет доля жатвы народной",- сбылись. В них все помыслы, желания. Великий ученый и патриот, он всегда останется для нас символом честности и трудолюбия, борьбы за интересы народа. Мы, его верные последователи, будем вечно чтить светлое имя Дмитрия Ивановича Менделеева. Я согласна с тем, что "феномен Менделеева" будет еще долго изучаться учеными разных специальностей.

Утверждение атомно-молекулярной теории на рубеже XIIX - XIX веков сопровождалось бурным ростом числа известных химических элементов. Только за первое десятилетие 19 века было открыто 14 новых элементов. Рекордсменом среди первооткрывателей оказался английский химик Гемфри Деви, который за один год с помощью электролиза получил 6 новых простых веществ (натрий, калий, магний, кальций, барий, стронций). А к 1830 году число известных элементов достигло 55.

Существование такого количества элементов, разнородных по своим свойствам, озадачивало химиков и требовало упорядочения и систематизации элементов. Многие учёные занимались поисками закономерностей в списке элементов и добивались определённого прогресса. Можно выделить три наиболее значительные работы, которые оспаривали приоритет открытия периодического закона у Д.И. Менделеева.

Менделеев сформулировал периодический закон в виде следующих основных положений:

  • 1. Элементы, расположенные по величине атомного веса, представляют явственную периодичность свойств.
  • 2. Должно ожидать открытия ещё многих неизвестных простых тел, например, сходных с Al и Si элементов с атомным весом 65 - 75.
  • 3. Величина атомного веса элемента иногда может быть исправлена, зная его аналогии.

Некоторые аналогии открываются по величине веса их атома. Первое положение было известно ещё до Менделеева, но именно он придал ему характер всеобщего закона, предсказав на его основе существование ещё не открытых элементов, изменив атомные веса ряда элементов и расположив некоторые элементы в таблице вопреки их атомным весам, но в полном соответствии с их свойствами (главным образом, валентностью). Остальные положения открыты только Менделеевым и являются логическими следствиями из периодического закона. Правильность этих следствий подтверждалась многими опытами в течение последующих двух десятилетий и позволила говорить о периодическом законе как о строгом законе природы.

Используя эти положения, Менделеев составил свой вариант периодической системы элементов. Первый черновой набросок таблицы элементов появился 17 февраля (1 марта по новому стилю) 1869 года.

А 6 марта 1869 года официальное сообщение об открытии Менделеева сделал профессор Меншуткин на заседании Русского химического общества.

В уста учёного вложили такую исповедь: Вижу во сне таблицу, где все элементы расставлены, как нужно. Проснулся, тотчас записал на клочке бумаги - только в одном месте впоследствии оказалась нужной поправка». Как всё просто в легендах! На разработку и поправку ушло более 30 лет жизни учёного.

Процесс открытия периодического закона поучителен и сам Менделеев рассказывал об этом так: «Невольно зародилась мысль о том, что между массой и химическими свойствами необходимо должна быть связь.

А так как масса вещества, хотя и не абсолютная, а лишь относительная, выражается окончательно в виде весов атомов, то надо искать функциональное соответствие между индивидуальными свойствами элементов и их атомными весами. Искать же что - либо, хотя бы грибы или какую-нибудь зависимость, нельзя иначе, как смотря и пробуя.

Вот я и стал подбирать, написав на отдельных карточках элементы с их атомными весами и коренными свойствами, сходные элементы и близкие атомные веса, что быстро и привело к тому заключению, что свойства элементов стоят в периодической зависимости от их атомного веса, причём, сомневаясь во многих неясностях, я ни минуты не сомневался в общности сделанного вывода, так как случайность допустить не возможно».

В самой первой таблицы Менделеева все элементы до кальция включительно - такие же, как и в современной таблице, за исключением благородных газов. Это можно увидеть по фрагменту страницы из статьи Д.И. Менделеева, содержащей периодическую систему элементов.

Если исходить из принципа увеличения атомных весов, то следующими элементами после кальция должны были быть ванадий, хром и титан. Но Менделеев поставил после кальция знак вопроса, а следом поместил титан, изменив его атомный вес с 52 до 50.

Неизвестному элементу, обозначенному знаком вопроса, был приписан атомный вес А = 45, являющийся средним арифметическим между атомными весами кальция и титана. Затем, между цинком и мышьяком Менделеев оставил место сразу для двух ещё не открытых элементов. Кроме того, он поместил теллур перед йодом, хотя последний имеет меньший атомный вес. При таком расположении элементов все горизонтальные ряды в таблице содержали только сходные элементы, и отчётливо проявлялась периодичность изменения свойств элементов. Последующие два года Менделеев значительно усовершенствовал систему элементов. В 1871 году вышло первое издание учебника Дмитрия Ивановича «Основы химии», в котором приведена периодическая система в почти современном виде.

В таблице образовалось 8 групп элементов, номера групп указывают на высшую валентность элементов тех рядов, которые включены в эти группы, и периоды становятся более близкими к современным, разбитые на 12 рядов. Теперь каждый период начинается активным щелочным металлом и заканчивается типичным неметаллом галогеном.Второй вариант системы дал возможность Менделееву предсказать существование не 4, а 12 элементов и, бросая вызов учёному миру, с изумительной точностью описал свойства трёх неизвестных элементов, которые он назвал экабор (эка на санскрите означает «одно и то же»), экаалюминий и экасилиций. (Галлия - древнеримское название Франции). Учёному удалось выделить этот элемент в чистом виде и изучить его свойства. А Менделеев увидел, что свойства галлия совпадают со свойствами предсказанного им экаалюминия, и сообщил Лекок де Буабодрану, что тот неверно измерил плотность галлия, которая должна быть равна 5,9-6,0 г/см3 вместо 4,7 г/см3. И действительно, более аккуратные измерения привели к правильному значению 5,904 г/см3. Окончательного признания периодический закон Д.И. Менделеева добился после 1886 года, когда немецкий химик К. Винклер, анализируя серебряную руду, получил элемент, который он назвал германием. Это оказывается экасицилий.

Периодический закон и периодическая система элементов.

Периодический закон - один из важнейших законов химии. Менделеев считал, что главной характеристикой элемента является его атомная масса. Поэтому он расположил все элементы в один ряд в порядке увеличения их атомной массы.

Если рассмотреть ряд элементов от Li до F, то можно увидеть, что металлические свойства элементов ослабляются, а неметаллические свойства усиливаются. Аналогично изменяются и свойства элементов в ряду от Na до Cl. Следующий знак К, как Li и Na, является типичным металлом.

Высшая валентность элементов увеличивается от I y Li до V y N (кислород и фтор имеют постоянную валентность, соответственно II и I) и от I y Na до VII y Cl. Следующий элемент К, как Li и Na, имеет валентность I. В ряду оксидов от Li2O до N2O5 и гидроксидов от LiОН до HNO3 основные свойства ослабляются, а кислотные свойства усиливаются. Аналогично изменяются свойства оксидов в ряду от Na2O и NaOH до Cl2O7 и HClO4. Оксид калия К2О, как и оксиды лития и натрия Li2O и Na2O, является основным оксидом, а гидроксид калия КОН, как и гидроксиды лития и натрия LiOH и NaOH, является типичным основанием.

Аналогично изменяются формы и свойства неметаллов от CH4 до HF и от SiH4 до HCl.

Такой характер свойств элементов и их соединений, какой наблюдается при увеличении атомной массы элементов, называется периодическим изменением. Свойства всех химических элементов при увеличении атомной массы изменяются периодически.

Это периодическое изменение называется периодической зависимостью свойств элементов и их соединений от величины атомной массы.

Поэтому Д.И. Менделеев сформулировал открытый им закон так:

· Свойства элементов, а так же формы и свойства соединений элементов находятся в периодической зависимости от величины атомной массы элементов.

Менделеев расположил периоды элементов друг под другом и в результате составил периодическую систему элементов.

Он говорил, что таблица элементов - плод не только его собственного труда, но и усилий многих химиков, среди которых он особо отмечал «укрепителей периодического закона», открывших предсказанные им элементы.

Для создания современной таблицы потребовалась напряженная многолетняя работа тысяч и тысяч химиков и физиков. Если бы Менделеев был сейчас жив, он, глядя на современную таблицу элементов, вполне мог бы повторить слова английского химика Дж.У.Меллора, автора классической 16-томной энциклопедии по неорганической и теоретической химии. Закончив в 1937, после 15-летней работы, свой труд, он написал с признательностью на титульном листе: «Посвящается рядовым огромной армии химиков. Их имена забыты, их работы остались»...

Периодическая система - это классификация химических элементов, устанавливающая зависимость различных свойств элементов от заряда атомного ядра. Система является графическим выражением периодического закона. На октябрь 2009 года известно 117 химических элементов (с порядковыми номерами с 1 по 116 и 118), из них 94 обнаружены в природе (некоторые -- лишь в следовых количествах). Остальные23 получены искусственно в результате ядерных реакций - это процесс превращения атомных ядер, происходящий при их взаимодействии с элементарными частицами, гамма-квантами и друг с другом, обычно приводящий к выделению колоссального количества энергии. Первые 112 элементов имеют постоянные названия, остальные -- временные.

Открытие 112-го элемента (самый тяжелый из официальных) признано Международным союзом теоретической и прикладной химии.

Самый стабильный из известных изотопов данного элемента имеет период полураспада 34 секунды. На начало июня 2009 года носит неофициальное имя унунбий, был впервые синтезирован в феврале 1996 года на ускорителе тяжелых ионов в Институте тяжелых ионов в Дармштадте. Первооткрыватели имеют полгода, чтобы предложить новое официальное название для добавления в таблицу (ими уже предлагались Виксхаузий, Гельмгольций, Венусий, Фриший, Штрассманий и Гейзенбергий). В настоящее время известны трансурановые элементы с номерами 113-116 и 118, полученные в Объединенном институте ядерных исследований в Дубне, однако они официально пока не признаны. Распространённее других являются 3 формы таблицы Менделеева: «короткая» (короткопериодная), «длинная» (длиннопериодная) и «сверхдлинная». В «сверхдлинном» варианте каждый период занимает ровно одну строчку. В «длинном» варианте лантаноиды (семейство из 14 химических элементов с порядковыми номерами 58--71, расположенных в VI периоде системы) и актиноиды (семейство радиоактивных химических элементов, состоящее из актиния и 14 подобных ему по своим химическим свойствам) вынесены из общей таблицы, делая её более компактной. В «короткой» форме записи, в дополнение к этому, четвёртый и последующие периоды занимают по 2 строчки; символы элементов главных и побочных подгрупп выравниваются относительно разных краёв клеток. Короткая форма таблицы, содержащая восемь групп элементов, была официально отменена ИЮПАК в 1989 году. Несмотря на рекомендацию использовать длинную форму, короткая форма продолжила приводиться в большом числе российских справочников и пособий и после этого времени. Из современной иностранной литературы короткая форма исключена полностью, вместо неё используется длинная форма. Такую ситуацию некоторые исследователи связывают, в том числе с кажущейся рациональной компактностью короткой формы таблицы, а также со стереотипностью мышления и невосприятием современной (международной) информации.

В 1969 году Теодор Сиборг предложил расширенную периодическую таблицу элементов. Нильсом Бором разрабатывалась лестничная (пирамидальная) форма периодической системы.

Существует и множество других, редко или вовсе не используемых, но весьма оригинальных, способов графического отображения Периодического закона. Сегодня существуют несколько сот вариантов таблицы, при этом учёные предлагают всё новые варианты.

Периодический закон и его обоснование.

Периодический закон позволил привести в систему и обобщить огромный объем научной информации в химии. Эту функцию закона принято называть интегративной. Особо четко она проявляется в структурировании научного и учебного материала химии.

Академик А. Е. Ферсман говорил, что система объединила всю химию в рамки единой пространственной, хронологической, генетической, энергетической связи.

Интегративная роль Периодического закона проявилась и в том, что некоторые данные об элементах, якобы выпадавшие из общих закономерностей, были проверены и уточнены как самим автором, так и его последователями.

Так случилось с характеристиками бериллия. До работы Менделеева его считали трехвалентным аналогом алюминия из-за их так называемого диагонального сходства. Таким образом, во втором периоде оказывалось два трехвалентных элемента и ни одного двухвалентного. Именно на этой стадии Менделеев заподозрил ошибку в исследованиях свойств бериллия, он нашел работу российского химика Авдеева, утверждавшего, что бериллий двухвалентен и имеет атомный вес 9. Работа Авдеева оставалась не замеченной ученым миром, автор рано скончался, по-видимому, получив отравление чрезвычайно ядовитыми бериллиевыми соединениями. Результаты исследования Авдеева утвердились в науке благодаря Периодическому закону.

Такие изменения и уточнения значений и атомных весов, и валентностей были сделаны Менделеевым еще для девяти элементов (In, V, Th, U, La, Ce и трех других лантаноидов).

Еще у десяти элементов были исправлены только атомные веса. И все эти уточнения впоследствии были подтверждены экспериментально.

Прогностическая (предсказательная) функция Периодического закона получила самое яркое подтверждение в открытии неизвестных элементов с порядковыми номерами 21, 31 и 32.

Их существование сначала было предсказано на интуитивном уровне, но с формированием системы Менделеев с высокой степенью точности смог рассчитать их свойства. Хорошо известная история открытия скандия, галлия и германия явилась триумфом менделеевского открытия. Он все предсказания делал на основе им же самим открытого всеобщего закона природы.

Всего же Менделеевым были предсказаны двенадцать элементов.С самого начала Менделеев указал, что закон описывает свойства не только самих химических элементов, но и множества их соединений. Для подтверждения этого достаточно привести такой пример. С 1929 г., когда академик П. Л. Капица впервые обнаружил неметаллическую проводимость германия, во всех странах мира началось развитие учения о полупроводниках.

Сразу стало ясно, что элементы с такими свойствами занимают главную подгруппу IV группы.

Со временем пришло понимание, что полупроводниковыми свойствами должны в большей или меньшей мере обладать соединения элементов, расположенных в периодах равно удаленной от этой группы (например, с общей формулой типа АзВ).

Это сразу сделало поиск новых практически важных полупроводников целенаправленным и предсказуемым. На таких соединениях основывается практически вся современная электроника.

Важно отметить, что предсказания в рамках Периодической системы делались и после ее всеобщего признания. В 1913г.

Мозли обнаружил, что длина волн рентгеновских лучей, которые получены от антикатодов, сделанных из разных элементов, изменяется закономерно в зависимости от порядкового номера, условно присвоенного элементам в Периодической системе. Эксперимент подтвердил, что порядковый номер элемента имеет прямой физический смысл.

Лишь позднее порядковые номера были связаны со значением положительного заряда ядра. Зато закон Мозли позволил сразу экспериментально подтвердить число элементов в периодах и вместе с тем предсказать места еще не открытых к тому времени гафния (№ 72) и рения (№ 75).

Долгое время шел спор: выделять инертные газы в самостоятельную нулевую группу элементов или считать их главной подгруппой VIII группы.

Исходя из положения элементов в Периодической системе, химики-теоретики во главе с Лайнусом Полингом давно сомневались в полной химической пассивности инертных газов, напрямую указывая на возможную устойчивость их фторидов и оксидов.

Но только в 1962 г. американский химик Нил Бартлетт впервые осуществил в самых обычных условиях реакцию гексафторида платины с кислородом, получив гексафтороплати-нат ксенона XePtF^, а за ним и другие соединения газов, которые теперь правильнее называть благородными, а не инертны.

Еще алхимики пытались найти закон природы, на основе которого можно было бы систематизировать химические элементы. Но им недоставало надежных и подробных сведений об элементах. К середине XIX в. знаний о химических элементах стало достаточно, а число элементов возросло настолько, что в науке возникла естественная потребность в их классификации. Первые попытки классификации элементов на металлы и неметаллы оказались несостоятельными. Предшественники Д.И.Менделеева (И. В. Деберейнер, Дж. А. Ньюлендс, Л. Ю. Мейер) многое сделали для подготовки открытия периодического закона, но не смогли постичь истину. Дмитрий Иванович установил связь между массой элементов и их свойствами.

Дмитрий Иванович родился в г. Тобольске. Он был семнадцатым ребенком в семье. Закончив в родном городе гимназию, Дмитрий Иванович поступил в Санкт-Петербурге в Главный педагогический институт, после окончания которого с золотой медалью уехал на два года в научную командировку за границу. После возвращения его пригласили в Петербургский университет. Приступая к чтению лекций по химии, Менделеев не нашел ничего, что можно было бы рекомендовать студентам в качестве учебного пособия. И он решил написать новую книгу – «Основы химии».

Открытию периодического закона предшествовало 15 лет напряженной работы. 1 марта 1869 г. Дмитрий Иванович предполагал выехать из Петербурга в губернии по делам.

Периодический закон был открыт на основе характеристики атома – относительной атомной массы .

Менделеев расположил химические элементы в порядке возрастания их атомных масс и заметил, что свойства элементов повторяются через определенный промежуток – период, Дмитрий Иванович расположил периодыдруг под другом., так, чтобы сходные элементы располагались друг под другом – на одной вертикали, так была построена периодическая система элементов.

1 марта 1869г. Формулировка периодического закона Д.И. Менделеева.

Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов.

К сожалению, сторонников периодического закона сначала было очень мало, даже среди русских ученых. Противников – много, особенно в Германии и Англии.
Открытие периодического закона – это блестящий образец научного предвидения: в 1870 г. Дмитрий Иванович предсказал существование трех еще неизвестных тогда элементов, которые назвал экасилицием, экаалюминием и экабором. Он сумел правильно предсказать и важнейшие свойства новых элементов. И вот через 5 лет, в 1875 г., французский ученый П.Э. Лекок де Буабодран, ничего не знавший о работах Дмитрия Ивановича, открыл новый металл, назвав его галлием. По ряду свойств и способу открытия галлий совпадал с экаалюминием, предсказанным Менделеевым. Но его вес оказался меньше предсказанного. Несмотря на это, Дмитрий Иванович послал во Францию письмо, настаивая на своем предсказании.
Ученый мир был ошеломлен тем, что предсказание Менделеевым свойств экаалюминия оказалось таким точным. С этого момента периодический закон начинает утверждаться в химии.
В 1879 г. Л. Нильсон в Швеции открыл скандий, в котором воплотился предсказанный Дмитрием Ивановичем экабор .
В 1886 г. К. Винклер в Германии открыл германий, который оказался экасилицием .

Но гениальность Дмитрия Ивановича Менделеева и его открытия - не только эти предсказания!

В четырёх местах периодической системы Д. И. Менделеев расположил элементы не в порядке возрастания атомных масс:

Ещё в конце 19 века Д.И. Менделеев писал, что, по-видимому, атом состоит из других более мелких частиц. После его смерти в 1907 г. было доказано, что атом состоит из элементарных частиц. Теория строения атома подтвердила правотуМенделеева, перестановки данных элементов не в соответствии с ростом атомных масс полностью оправданы.

Современная формулировка периодического закона.

Свойства химических элементов и их соединений находятся в периодической зависимости от величины заряда ядер их атомов, выражающейся в периодической повторяемости структуры внешней валентной электронной оболочки.
И вот спустя более 130 лет после открытия периодического закона мы можем вернуться к словам Дмитрия Ивановича, взятым в качестве девиза нашего урока: «Периодическому закону будущее не грозит разрушением, а только надстройка и развитие обещаются». Сколько химических элементов открыто на данный момент? И это далеко не предел.

Графическим изображением периодического закона является периодическая система химических элементов. Это краткий конспект всей химии элементов и их соединений.

Изменения свойств в периодической системе с ростом величины атомных весов в периоде (слева направо):

1. Металлические свойства уменьшаются

2. Неметаллические свойства возрастают

3. Свойства высших оксидов и гидроксидов изменяются от основных через амфотерные к кислотным.

4. Валентность элементов в формулах высших оксидов возрастает от I до VII , а в формулах летучих водородных соединений уменьшается от IV до I .

Основные принципы построения периодической системы.

Признак сравнения

Д.И.Менделеев

1. Как устанавливается последовательность элементов по номерам? (Что положено в основу п.с.?)

Элементы расставлены в порядке увеличения их относительных атомных масс. При этом есть исключения.

Ar – K, Co – Ni, Te – I, Th - Pa

2. Принцип объединения элементов в группы.

Качественный признак. Сходство свойств простых веществ и однотипных сложных.

3. Принцип объединения элементов в периоды.



Похожие статьи